1
|
Zhang Q, Chen F. Impact of single-trial avoidance learning on subsequent sleep. Eur J Neurosci 2024; 59:739-751. [PMID: 38342099 DOI: 10.1111/ejn.16274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Both non-rapid eye movement (NonREM) sleep and rapid eye movement (REM) sleep, as well as sleep spindle and ripple oscillations, are important for memory formation. Through cortical EEG recordings of prefrontal cortex and hippocampus during and after an inhibitory avoidance task, we analysed the dynamic changes in the amounts of sleep, spindle and ripple oscillations related to memory formation. The total amount of NonREM sleep was reduced during the first hour after learning. Moreover, significant decrease of the total spindle and ripple counts was observed at the first hour after learning as well. In addition, foot shock alone, with no associated learning, produced little effect on the dynamics of sleep oscillations, indicating that the learning experience is necessary for these changes to occur.
Collapse
Affiliation(s)
- Qianwen Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Fujun Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Correa-Netto NF, Masukawa MY, Silva-Gomes AM, Linardi A, Santos-Junior JG. Memory reactivation mediates emotional valence updating of contextual memory in mice with protracted morphine withdrawal. Behav Brain Res 2023; 438:114212. [PMID: 36370948 DOI: 10.1016/j.bbr.2022.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Mice subjected to morphine locomotor sensitization develop increased anxiety-behavior expression during protracted morphine withdrawal. This behavioral change is dependent on reexposure to the context of locomotor sensitization and reflects a state of conditioned anxiety. In this study, the effect of memory reconsolidation on the expression of conditioned anxiety in mice with protracted morphine withdrawal was examined. Five experimental protocols involving male C57BL/6 mice were used in which the animals were subjected to locomotor sensitization induced by morphine and reexposed to the context associated with the drug effect 28 days after locomotor sensitization and immediately after subjected to elevated plus maze. In experiment 1, mice were subjected or not to memory reactivation session and was observed that memory reactivation 27 days after sensitization reduced conditioned anxiety. In experiment 2, mice were subjected to memory reactivation, 24 h, 6 h or 1 h before contextual reexposure, and the effect of memory reactivation coincided with the temporal requirement for reconsolidation. In experiment 3, which involved exposure to a situation of acute stress immediately before memory reactivation, the mice demonstrated a return to increased conditioned anxiety. To confirm the influence of reconsolidation, in experiments 4 and 5, mice subjected to memory reactivation were treated with Nimodipine, diazepam or cyclohexamine, substances commonly used as pharmacological controls in reconsolidation experiments. Treatment with each substance separately inhibited the effect of reactivation in experiment 5 (presence of acute stressor) but not in experiment 4 (absence of acute stressor). These results suggest that, in our experimental model, reconsolidation is mediated through updating of the emotional valence of contextual memory associated with the administration of morphine.
Collapse
Affiliation(s)
- Nelson Francisco Correa-Netto
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil.
| | - Márcia Yuriko Masukawa
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| | - Alessandro Marcos Silva-Gomes
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| | - Alessandra Linardi
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| | - Jair Guilherme Santos-Junior
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| |
Collapse
|
3
|
Arellano Perez AD, Alves J, de Oliveira Alvares L. Re-exposures in the Dark Cycle Promote Attenuation of Fear Memory: Role of the Circadian Cycle and Glucocorticoids. Neuroscience 2022; 505:1-9. [DOI: 10.1016/j.neuroscience.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
|
4
|
Pedraza LK, Sierra RO, de Oliveira Alvares L. Systems consolidation and fear memory generalisation as a potential target for trauma-related disorders. World J Biol Psychiatry 2022; 23:653-665. [PMID: 35001808 DOI: 10.1080/15622975.2022.2027010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fear memory generalisation is a central hallmark in the broad range of anxiety and trauma-related disorders. Recent findings suggest that fear generalisation is closely related to hippocampal dependency during retrieval. In this review, we describe the current understanding about memory generalisation and its potential influence in fear attenuation through pharmacological and behavioural interventions. In light of systems consolidation framework, we propose that keeping memory precision could be a key step to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Lizeth K Pedraza
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, 91.501-970, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Physiology, University of Szeged, Szeged, Hungary
| | - Rodrigo O Sierra
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, 91.501-970, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Physiology, University of Szeged, Szeged, Hungary
| | - Lucas de Oliveira Alvares
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, 91.501-970, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Institute of Health Sciences, Porto Alegre, Brazil
| |
Collapse
|
5
|
Beisel JMS, Maza FJ, Justel N, Larrosa PNF, Delorenzi A. Embodiment of an Emotional State Concurs with a Stress-Induced Reconsolidation Impairment Effect on an Auditory Verbal Word-List Memory. Neuroscience 2022; 497:239-256. [PMID: 35472504 DOI: 10.1016/j.neuroscience.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
Stress alters memory. Understanding how and when acute stress improves or impairs memory is a challenge. Stressors can affect memory depending on a combination of factors. Typically, mild stressors and stress hormones might promote consolidation of memory processing and impair memory retrieval. However, studies have shown that during reconsolidation, stressors may either enhance or impair recalled memory. We propose that a function of reconsolidation is to induce changes in the behavioral expression of memory. Here, we adapted the Rey Auditory Verbal Learning Test (RAVLT) to evaluate the effect of cold pressor stress (CPS) during the reconsolidation of this declarative memory. A decay in memory performance attributable to forgetting was found at the time of memory reactivation 5 d after training (day 6). Contrary to our initial predictions, the administration of CPS after memory reactivation impaired long-term memory expression (day 7), an effect dependent on the presence of a mismatch during Reactivation Session. No differences in recognition tests were found. To assess putative sources of the negative memory modulation effects induced during reconsolidation, current emotional state was evaluated immediately after Testing Session (day 7). An increase in arousal was revealed only when CPS was administered concurrently with memory reactivation-labilization. The possibility of integration during reconsolidation of independent associations of these emotive components in the trace is a critical factor in modulating neutral memories during reconsolidation by stressors.
Collapse
Affiliation(s)
- Jessica Mariel Sánchez Beisel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina
| | - Francisco Javier Maza
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina
| | - Nadia Justel
- Lab. Interdisciplinario de Neurociencia Cognitiva (LINC), CEMSC3, ICIFI, UNSAM CONICET, Argentina
| | - Pablo Nicolas Fernandez Larrosa
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina.
| | - Alejandro Delorenzi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina.
| |
Collapse
|
6
|
Gisquet-Verrier P, Riccio DC. Revisiting systems consolidation and the concept of consolidation. Neurosci Biobehav Rev 2021; 132:420-432. [PMID: 34875279 DOI: 10.1016/j.neubiorev.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
For more than 50 years, knowledge of memory processes has been based on the consolidation hypothesis, which postulates that new memories require time to become stabilized. Two forms of the consolidation model exist. The Cellular Consolidation concept is based upon retrograde amnesia induced by amnesic treatments, the severity of which decreases as the learning to treatment increases over minutes or hours. In contrast, The Systems Consolidation model is based on post-training hippocampal lesions, which produce more severe retrograde amnesia when induced after days than after weeks. Except for the temporal parameters, Cellular and Systems Consolidation show many similarities. Here we propose that Systems consolidation, much as Cellular Consolidation (see Gisquet- Verrier and Riccio, 2018), can be explained in terms of a form of state-dependency. Accordingly, lesions of the hippocampus induce a change in the internal state of the animal, which disrupts retrieval processes. But the effect of contextual change is known to decrease with the length of the retention intervals, consistent with time-dependent retrograde amnesia. We provide evidence supporting this new view.
Collapse
Affiliation(s)
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
7
|
Alfei JM, De Gruy H, De Bundel D, Luyten L, Beckers T. Apparent reconsolidation interference without generalized amnesia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110161. [PMID: 33186637 PMCID: PMC7610545 DOI: 10.1016/j.pnpbp.2020.110161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Memories remain dynamic after consolidation, and when reactivated, they can be rendered vulnerable to various pharmacological agents that disrupt the later expression of memory (i.e., amnesia). Such drug-induced post-reactivation amnesia has traditionally been studied in AAA experimental designs, where a memory is initially created for a stimulus A (be it a singular cue or a context) and later reactivated and tested through exposure to the exact same stimulus. Using a contextual fear conditioning procedure in rats and midazolam as amnestic agent, we recently demonstrated that drug-induced amnesia can also be obtained when memories are reactivated through exposure to a generalization stimulus (GS, context B) and later tested for that same generalization stimulus (ABB design). However, this amnestic intervention leaves fear expression intact when at test animals are instead presented with the original training stimulus (ABA design) or a novel generalization stimulus (ABC design). The underlying mechanisms of post-reactivation memory malleability and of MDZ-induced amnesia for a generalization context remain largely unknown. Here, we evaluated whether, like typical CS-mediated (or AAA) post-reactivation amnesia, GS-mediated (ABB) post-reactivation amnesia displays key features of a destabilization-based phenomenon. We first show that ABB post-reactivation amnesia is critically dependent on prediction error at the time of memory reactivation and provide evidence for its temporally graded nature. In line with the known role of GluN2B-NMDA receptor activation in memory destabilization, we further demonstrate that pre-reactivation administration of ifenprodil, a selective antagonist of GluN2B-NMDA receptors, prevents MDZ-induced ABB amnesia. In sum, our data reveal that ABB MDZ-induced post-reactivation amnesia exhibits the hallmark features of a destabilization-dependent phenomenon. Implication of our findings for a reconsolidation-based account of post-reactivation amnesia are discussed.
Collapse
Affiliation(s)
- Joaquín M. Alfei
- Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Hérnan De Gruy
- Department of Biology, University of Rome, 185 Rome, Italy
| | - Dimitri De Bundel
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Laura Luyten
- Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.
| | - Tom Beckers
- Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.
| |
Collapse
|
8
|
Understanding the dynamic and destiny of memories. Neurosci Biobehav Rev 2021; 125:592-607. [PMID: 33722616 DOI: 10.1016/j.neubiorev.2021.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 01/16/2023]
Abstract
Memory formation enables the retention of life experiences overtime. Based on previously acquired information, organisms can anticipate future events and adjust their behaviors to maximize survival. However, in an ever-changing environment, a memory needs to be malleable to maintain its relevance. In fact, substantial evidence suggests that a consolidated memory can become labile and susceptible to modifications after being reactivated, a process termed reconsolidation. When an extinction process takes place, a memory can also be temporarily inhibited by a second memory that carries information with opposite meaning. In addition, a memory can fade and lose its significance in a process known as forgetting. Thus, following retrieval, new life experiences can be integrated with the original memory trace to maintain its predictive value. In this review, we explore the determining factors that regulate the fate of a memory after its reactivation. We focus on three post-retrieval memory destinies (reconsolidation, extinction, and forgetting) and discuss recent rodent studies investigating the biological functions and neural mechanisms underlying each of these processes.
Collapse
|
9
|
Alfei JM, Ferrer Monti RI, Molina VA, De Bundel D, Luyten L, Beckers T. Generalization and recovery of post-retrieval amnesia. J Exp Psychol Gen 2020; 149:2063-2083. [PMID: 32297779 PMCID: PMC7116269 DOI: 10.1037/xge0000765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Selective amnesia for previously established memories can be induced by administering drugs that impair protein synthesis shortly after memory reactivation. Competing theoretical accounts attribute this selective post-retrieval amnesia to drug-induced engram degradation (reconsolidation blockade) or to incorporation of sensory features of the reactivation experience into the memory representation, hampering later retrieval in a drug-free state (memory integration). Here we present evidence that critically challenges both accounts. In contextual fear conditioning in rats, we find that amnesia induced by administration of midazolam (MDZ) after reexposure to the training context A generalizes readily to a similar context B. Amnesia is also observed when animals are exposed to the similar context B prior to MDZ administration and later tested for fear to context B but recovers when instead testing for fear to the original training context A or an equally similar but novel context C. Next to their theoretical implications for the nature of forgetting, our findings raise important questions about the viability of reconsolidation-based interventions for the treatment of emotional disorders. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
|
10
|
Swiercz AP, Iyer L, Yu Z, Edwards A, Prashant NM, Nguyen BN, Horvath A, Marvar PJ. Evaluation of an angiotensin Type 1 receptor blocker on the reconsolidation of fear memory. Transl Psychiatry 2020; 10:363. [PMID: 33110066 PMCID: PMC7591922 DOI: 10.1038/s41398-020-01043-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
Inhibition of the angiotensin type 1 receptor (AT1R) has been shown to decrease fear responses in both humans and rodents. These effects are attributed to modulation of extinction learning, however the contribution of AT1R to alternative memory processes remains unclear. Using classic Pavlovian conditioning combined with radiotelemetry and whole-genome RNA sequencing, we evaluated the effects of the AT1R antagonist losartan on fear memory reconsolidation. Following the retrieval of conditioned auditory fear memory, animals were given a single intraperitoneal injection of losartan or saline. In response to the conditioned stimulus (CS), losartan-treated animals exhibited significantly less freezing at 24 h and 1 week; an effect that was dependent upon memory reactivation and independent of conditioned cardiovascular reactivity. Using an unbiased whole-genome RNA sequencing approach, transcriptomic analysis of the basolateral amygdala (BLA) identified losartan-dependent differences in gene expression during the reconsolidation phase. These findings demonstrate that post-retrieval losartan modifies behavioral and transcriptomic markers of conditioned fear memory, supporting an important regulatory role for this receptor in reconsolidation and as a potential pharmacotherapeutic target for maladaptive fear disorders such as PTSD.
Collapse
Affiliation(s)
- Adam P. Swiercz
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Laxmi Iyer
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Zhe Yu
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Allison Edwards
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - N. M. Prashant
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Bryan N. Nguyen
- grid.253615.60000 0004 1936 9510Computational Biology Institute, George Washington University, Washington, DC 20052 USA
| | - Anelia Horvath
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Paul J. Marvar
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA ,grid.253615.60000 0004 1936 9510Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC 20052 USA
| |
Collapse
|
11
|
Gonzalez H, Bloise L, Maza FJ, Molina VA, Delorenzi A. Memory built in conjunction with a stressor is privileged: Reconsolidation-resistant memories in the crab Neohelice. Brain Res Bull 2020; 157:108-118. [PMID: 32017969 DOI: 10.1016/j.brainresbull.2020.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
The dynamics of memory processes are conserved throughout evolution, a feature based on the hypothesis of a common origin of the high-order memory centers in bilateral animals. Reconsolidation is just one example. The possibility to interfere with long-term memory expression during reconsolidation has been proposed as potentially useful in clinical application to treat traumatic memories. However, several pieces of evidence in rodents show that either robust fear memories or stressful events applied before acquisition promote reconsolidation-resistant memories, i.e., memories that are resistant to the interfering effect of drugs on memory reconsolidation. Conceivably, the generation of these reconsolidation-resistant fear memories also occurs in humans. Is the induction of reconsolidation-resistant memories part of the dynamics of memory processes conserved throughout evolution? In the semiterrestrial crab Neohelice granulata, memory reconsolidation is triggered by a short reminder without reinforcement. Here, we show that an increase in the salience of the aversive stimulus augmented the memory strength; nonetheless, the protein synthesis inhibitor cycloheximide still disrupted the reconsolidation process. However, crabs stressed by a water-deprivation episode before a strong training session built up a memory that was now reconsolidation-resistant. We tested whether these reconsolidation-resistant effects can be challenged by changing parametric conditions of memory-reminder sessions; multiple memory reactivations without reinforcement were not able to trigger the labilization-reconsolidation of this resistant memory. Overall, the present findings suggest that generation of reconsolidation-resistant memories can be another part of the dynamics of memory processes conserved throughout evolution that protects privileged information from change.
Collapse
Affiliation(s)
- Heidi Gonzalez
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Leonardo Bloise
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Francisco J Maza
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Víctor A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| | - Alejandro Delorenzi
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| |
Collapse
|
12
|
Popik B, Amorim FE, Amaral OB, De Oliveira Alvares L. Shifting from fear to safety through deconditioning-update. eLife 2020; 9:51207. [PMID: 31999254 PMCID: PMC7021486 DOI: 10.7554/elife.51207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
Aversive memories are at the heart of psychiatric disorders such as phobias and post-traumatic stress disorder (PTSD). Here, we present a new behavioral approach in rats that robustly attenuates aversive memories. This method consists of ‘deconditioning’ animals previously trained to associate a tone with a strong footshock by replacing it with a much weaker one during memory retrieval. Our results indicate that deconditioning-update is more effective than traditional extinction in reducing fear responses; moreover, such effects are long lasting and resistant to renewal and spontaneous recovery. Remarkably, this strategy overcame important boundary conditions for memory updating, such as remote or very strong traumatic memories. The same beneficial effect was found in other types of fear-related memories. Deconditioning was mediated by L-type voltage-gated calcium channels and is consistent with computational accounts of mismatch-induced memory updating. Our results suggest that shifting from fear to safety through deconditioning-update is a promising approach to attenuate traumatic memories.
Collapse
Affiliation(s)
- Bruno Popik
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felippe Espinelli Amorim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Olavo B Amaral
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas De Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Ortiz V, Calfa GD, Molina VA, Martijena ID. Resistance to fear memory destabilization triggers exaggerated emotional-like responses following memory reactivation. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:197-204. [PMID: 30978427 DOI: 10.1016/j.pnpbp.2019.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 01/23/2023]
Abstract
Fear memory reactivation does not always lead to memory destabilization-reconsolidation. For instance, fear memories formed following withdrawal from chronic ethanol consumption or a stressful event are less likely to become destabilized after reactivation, with the effect of recall of these memories on the affective state still requiring elucidation. Here, we investigated the negative emotional-like responses following fear memory reactivation in ethanol-withdrawn (ETOH) rats by focusing on the possible role played by destabilization. Our findings indicated that ETOH rats displayed an increased freezing in a novel context and an anxiogenic-like response in the elevated plus maze (EPM) following memory reactivation, whereas the behavior of CON animals was not affected. The destabilization blockade by pre-reactivation nimodipine (16 mg/kg, s.c) administration promoted in CON animals a similar behavior in the EPM and in a novel environment as that exhibited by ETOH rats after the reminder. Moreover, facilitating destabilization by pre-reactivation d-cycloserine (5 mg/kg, i.p) administration prevented the emotional-like disturbances observed in ETOH rats. Finally, using restraint stress, which is also an inductor of a fear memory resistant to destabilization, an increased fear response in an unconditioned environment and an anxiogenic-like state was also found after the presentation of the fear reminder in stressed rats. Our results suggest that, in the context of resistant fear memories, the occurrence of destabilization influences how animals respond to subsequent environmental challenges following reactivation.
Collapse
Affiliation(s)
- Vanesa Ortiz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina
| | - Gastón Diego Calfa
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina
| | - Víctor Alejandro Molina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina
| | - Irene Delia Martijena
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina.
| |
Collapse
|
14
|
Quillfeldt JA. Temporal Flexibility of Systems Consolidation and the Synaptic Occupancy/Reset Theory (SORT): Cues About the Nature of the Engram. Front Synaptic Neurosci 2019; 11:1. [PMID: 30814946 PMCID: PMC6381034 DOI: 10.3389/fnsyn.2019.00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/14/2019] [Indexed: 11/24/2022] Open
Abstract
The ability to adapt to new situations involves behavioral changes expressed either from an innate repertoire, or by acquiring experience through memory consolidation mechanisms, by far a much richer and flexible source of adaptation. Memory formation consists of two interrelated processes that take place at different spatial and temporal scales, Synaptic Consolidation, local plastic changes in the recruited neurons, and Systems Consolidation, a process of gradual reorganization of the explicit/declarative memory trace between hippocampus and the neocortex. In this review, we summarize some converging experimental results from our lab that support a normal temporal framework of memory systems consolidation as measured both from the anatomical and the psychological points of view, and propose a hypothetical model that explains these findings while predicting other phenomena. Then, the same experimental design was repeated interposing additional tasks between the training and the remote test to verify for any interference: we found that (a) when the animals were subject to a succession of new learnings, systems consolidation was accelerated, with the disengagement of the hippocampus taking place before the natural time point of this functional switch, but (b) when a few reactivation sessions reexposed the animal to the training context without the shock, systems consolidation was delayed, with the hippocampus prolonging its involvement in retrieval. We hypothesize that new learning recruits from a fixed number of plastic synapses in the CA1 area to store the engram index, while reconsolidation lead to a different outcome, in which additional synapses are made available. The first situation implies the need of a reset mechanism in order to free synapses needed for further learning, and explains the acceleration observed under intense learning activity, while the delay might be explained by a different process, able to generate extra free synapses: depending on the cognitive demands, it deals either with a fixed or a variable pool of available synapses. The Synaptic Occupancy/Reset Theory (SORT) emerged as an explanation for the temporal flexibility of systems consolidation, to encompass the two different dynamics of explicit memories, as well as to bridge both synaptic and systems consolidation in one single mechanism.
Collapse
Affiliation(s)
- Jorge Alberto Quillfeldt
- Psychobiology and Neurocomputation Lab, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Gisquet-Verrier P, Le Dorze C. Post Traumatic Stress Disorder and Substance Use Disorder as Two Pathologies Affecting Memory Reactivation: Implications for New Therapeutic Approaches. Front Behav Neurosci 2019; 13:26. [PMID: 30814940 PMCID: PMC6381044 DOI: 10.3389/fnbeh.2019.00026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
In the present review, we provide evidence indicating that although post traumatic stress disorder (PTSD) and substance use disorder (SUD) are two distinct pathologies with very different impacts on people affected by these chronic illnesses, they share numerous common characteristics, present high rates of co-morbidity, and may result from common physiological dysfunctions. We propose that these pathologies result from hyper reactivity to reminders, and thus should be considered as two disorders of memory, treated as such. We review the different possibilities to intervene on pathological memories such as extinction therapy and reconsolidation blockade. We also introduce new therapeutic avenues directly indicate by our recent proposal to replace the consolidation/reconsolidation hypothesis by the integration concept. State dependency and emotional remodeling are two innovative treatments that have already provided encouraging results. In summary, this review shows that the discovery of reactivation-dependent memory malleability has open new therapeutic avenues based on the reprocessing of pathological memories, which constitute promising approaches to treat PTSD and SUD.
Collapse
Affiliation(s)
- Pascale Gisquet-Verrier
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Université Paris-Saclay, Orsay, France
| | | |
Collapse
|
16
|
Gisquet-Verrier P, Riccio DC. Memory Integration as a Challenge to the Consolidation/Reconsolidation Hypothesis: Similarities, Differences and Perspectives. Front Syst Neurosci 2019; 12:71. [PMID: 30687031 PMCID: PMC6337075 DOI: 10.3389/fnsys.2018.00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023] Open
Abstract
We recently proposed that retrograde amnesia does not result from a disruption of the consolidation/reconsolidation processes but rather to the integration of the internal state induced by the amnesic treatment within the initial memory. Accordingly, the performance disruption induced by an amnesic agent does not result from a disruption of the memory fixation process, but from a difference in the internal state present during the learning phase (or reactivation) and at the later retention test: a case of state-dependency. In the present article, we will review similarities and differences these two competing views may have on memory processing. We will also consider the consequences the integration concept may have on the way memory is built, maintained and retrieved, as well as future research perspectives that such a new view may generate.
Collapse
Affiliation(s)
- Pascale Gisquet-Verrier
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Université Paris-Saclay, Orsay, France
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
17
|
Radulovic J, Lee R, Ortony A. State-Dependent Memory: Neurobiological Advances and Prospects for Translation to Dissociative Amnesia. Front Behav Neurosci 2018; 12:259. [PMID: 30429781 PMCID: PMC6220081 DOI: 10.3389/fnbeh.2018.00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
In susceptible individuals, overwhelming traumatic stress often results in severe abnormalities of memory processing, manifested either as the uncontrollable emergence of memories (flashbacks) or as an inability to remember events (dissociative amnesia, DA) that are usually, but not necessarily, related to the stressful experience. These memory abnormalities are often the source of debilitating psychopathologies such as anxiety, depression and social dysfunction. The question of why memory for some traumatic experiences is compromised while other comparably traumatic experiences are remembered perfectly well, both within and across individuals, has puzzled clinicians for decades. In this article, we present clinical, cognitive, and neurobiological perspectives on memory research relevant to DA. In particular, we examine the role of state dependent memory (wherein memories are difficult to recall unless the conditions at encoding and recall are similar), and discuss how advances in the neurobiology of state-dependent memory (SDM) gleaned from animal studies might be translated to humans.
Collapse
Affiliation(s)
- Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States
| | - Royce Lee
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, United States
| | - Andrew Ortony
- Department of Psychology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
18
|
Gisquet-Verrier P, Riccio DC. Memory integration: An alternative to the consolidation/reconsolidation hypothesis. Prog Neurobiol 2018; 171:15-31. [PMID: 30343034 DOI: 10.1016/j.pneurobio.2018.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 09/11/2018] [Accepted: 10/13/2018] [Indexed: 10/28/2022]
Abstract
The original concept of consolidation considers that memory requires time to be fixed. Since 2000, a comparable protein-dependent re-stabilization phase, called reconsolidation, has been assumed to take place after memory retrieval. This consolidation/reconsolidation hypothesis, has dominated the literature for more than 50 years, despite compelling evidence that is inconsistent with it. In this review, we present an historical overview and explain how, despite serious criticisms, this hypothesis has persisted for decades and become accepted as a dogma. Based on both older and more recent evidence, we next propose the concept of memory integration which involves the linkage or embedding of new material into an already existing representation. We believe integration provides a viable explanation for retrograde amnesia in place of the consolidation/reconsolidation hypothesis. Integration can further be the basis for several major cases of memory alteration such as time dependent memory enhancement, interference, counter-conditioning, updating and other instances of memory malleability. In a final section we consider the implications this new concept may have for memory processes and its translational applications.
Collapse
Affiliation(s)
- Pascale Gisquet-Verrier
- Neuro-PSI, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Bât 446, Orsay, F-91405, France.
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
19
|
Periodical reactivation under the effect of caffeine attenuates fear memory expression in rats. Sci Rep 2018; 8:7260. [PMID: 29740084 PMCID: PMC5940846 DOI: 10.1038/s41598-018-25648-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/20/2018] [Indexed: 11/17/2022] Open
Abstract
In the last decade, several studies have shown that fear memories can be attenuated by interfering with reconsolidation. However, most of the pharmacological agents used in preclinical studies cannot be administered to humans. Caffeine is one of the world’s most popular psychoactive drugs and its effects on cognitive and mood states are well documented. Nevertheless, the influence of caffeine administration on fear memory processing is not as clear. We employed contextual fear conditioning in rats and acute caffeine administration under a standard memory reconsolidation protocol or periodical memory reactivation. Additionally, potential rewarding/aversion and anxiety effects induced by caffeine were evaluated by conditioning place preference or open field, respectively. Caffeine administration was able to attenuate weak fear memories in a standard memory reconsolidation protocol; however, periodical memory reactivation under caffeine effect was necessary to attenuate strong and remote memories. Moreover, caffeine promoted conditioned place preference and anxiolytic-like behavior, suggesting that caffeine weakens the initial learning during reactivation through counterconditioning mechanisms. Thus, our study shows that rewarding and anxiolytic effects of caffeine during fear reactivation can change the emotional valence of fear memory. It brings a new promising pharmacological approach based on drugs widely used such as caffeine to treat fear-related disorders.
Collapse
|
20
|
Abstract
Scientific advances in the last decades uncovered that memory is not a stable, fixed entity. Apparently stable memories may become transiently labile and susceptible to modifications when retrieved due to the process of reconsolidation. Here, we review the initial evidence and the logic on which reconsolidation theory is based, the wide range of conditions in which it has been reported and recent findings further revealing the fascinating nature of this process. Special focus is given to conceptual issues of when and why reconsolidation happen and its possible outcomes. Last, we discuss the potential clinical implications of memory modifications by reconsolidation.
Collapse
Affiliation(s)
- Josue Haubrich
- Department of Psychology, McGill University, Montreal, Canada
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Canada.
| |
Collapse
|
21
|
Sierra RO, Pedraza LK, Zanona QK, Santana F, Boos FZ, Crestani AP, Haubrich J, de Oliveira Alvares L, Calcagnotto ME, Quillfeldt JA. Reconsolidation-induced rescue of a remote fear memory blocked by an early cortical inhibition: Involvement of the anterior cingulate cortex and the mediation by the thalamic nucleus reuniens. Hippocampus 2017; 27:596-607. [DOI: 10.1002/hipo.22715] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Rodrigo O. Sierra
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Lizeth K. Pedraza
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Neurobiology of Memory Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Querusche K. Zanona
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Fabiana Santana
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Flávia Z. Boos
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Ana P. Crestani
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Lucas de Oliveira Alvares
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Neurobiology of Memory Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Lab; Biochemistry Department, ICBS, CEP 90.030-003, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Jorge A. Quillfeldt
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
22
|
Reconsolidation and psychopathology: Moving towards reconsolidation-based treatments. Neurobiol Learn Mem 2016; 142:162-171. [PMID: 27838441 DOI: 10.1016/j.nlm.2016.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/19/2016] [Accepted: 11/04/2016] [Indexed: 01/14/2023]
Abstract
Interfering with memory reconsolidation has valuable potential to be used as a treatment for maladaptive memories and psychiatric disorders. Numerous studies suggest that reconsolidation-based therapies may benefit psychiatric populations, but much remains unanswered. After reviewing the literature in clinical and healthy human populations, we discuss some of the major limitations to reconsolidation studies and clinical application. Finally, we provide recommendations for developing improved reconsolidation-based treatments, namely exploiting known boundary conditions and focusing on a novel unconditioned stimulus-retrieval paradigm.
Collapse
|
23
|
Sachser RM, Haubrich J, Lunardi PS, de Oliveira Alvares L. Forgetting of what was once learned: Exploring the role of postsynaptic ionotropic glutamate receptors on memory formation, maintenance, and decay. Neuropharmacology 2016; 112:94-103. [PMID: 27425202 DOI: 10.1016/j.neuropharm.2016.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Over the past years, extensive research in experimental cognitive neuroscience has provided a comprehensive understanding about the role of ionotropic glutamate receptor (IGluR)-dependent signaling underpinning postsynaptic plasticity induced by long-term potentiation (LTP), the leading cellular basis of long-term memory (LTM). However, despite the fact that iGluR-mediated postsynaptic plasticity regulates the formation and persistence of LTP and LTM, here we discuss the state-of-the-art regarding the mechanisms underpinning both LTP and LTM decay. First, we review the crucial roles that iGluRs play on memory encoding and stabilization. Second, we discuss the latest findings in forgetting considering hippocampal GluA2-AMPAR trafficking at postsynaptic sites as well as dendritic spine remodeling possibly involved in LTP decay. Third, on the role of retrieving consolidated LTMs, we discuss the mechanisms involved in memory destabilization that occurs followed reactivation that share striking similarities with the neurobiological basis of forgetting. Fourth, since different AMPAR subunits as well as postsynaptic scaffolding proteins undergo ubiquitination, the ubiquitin-proteasome system (UPS) is discussed in light of memory decay. In conclusion, we provide an integrated overview revealing some of the mechanisms determining memory forgetting that are mediated by iGluRs. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Ricardo Marcelo Sachser
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Santana Lunardi
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
24
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
Sachser RM, Santana F, Crestani AP, Lunardi P, Pedraza LK, Quillfeldt JA, Hardt O, Alvares LDO. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin. Sci Rep 2016; 6:22771. [PMID: 26947131 PMCID: PMC4780112 DOI: 10.1038/srep22771] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/15/2016] [Indexed: 01/26/2023] Open
Abstract
In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca2+ channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca2+ influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time.
Collapse
Affiliation(s)
- Ricardo Marcelo Sachser
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Santana
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Crestani
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Lunardi
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lizeth Katherine Pedraza
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jorge Alberto Quillfeldt
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Oliver Hardt
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, Scotland
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43422, Sala 216A, CEP 91.501-970, Porto Alegre, Rio Grande do Sul, Brasil
| |
Collapse
|
26
|
CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval. Neurobiol Learn Mem 2016; 128:103-9. [PMID: 26779588 DOI: 10.1016/j.nlm.2016.01.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 01/04/2023]
Abstract
Numerous studies have suggested that memories "destabilize" and require de novo protein synthesis in order to reconsolidate following retrieval, but very little is known about how this destabilization process is regulated. Recently, ubiquitin-proteasome mediated protein degradation has been identified as a critical regulator of memory trace destabilization following retrieval, though the specific mechanisms controlling retrieval-induced changes in ubiquitin-proteasome activity remain equivocal. Here, we found that proteasome activity is increased in the amygdala in a CaMKII-dependent manner following the retrieval of a contextual fear memory. We show that in vitro inhibition of CaMKII reversed retrieval-induced increases in proteasome activity. Additionally, in vivo pharmacological blockade of CaMKII abolished increases in proteolytic activity and activity related regulatory phosphorylation in the amygdala following retrieval, suggesting that CaMKII was "upstream" of protein degradation during the memory reconsolidation process. Consistent with this, while inhibiting CaMKII in the amygdala did not impair memory following retrieval, it completely attenuated the memory impairments that resulted from post-retrieval protein synthesis blockade. Collectively, these results suggest that CaMKII controls the initiation of the memory reconsolidation process through regulation of the proteasome.
Collapse
|
27
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
28
|
Crestani AP, Zacouteguy Boos F, Haubrich J, Ordoñez Sierra R, Santana F, Molina JMD, Cassini LDF, Alvares LDO, Quillfeldt JA. Memory reconsolidation may be disrupted by a distractor stimulus presented during reactivation. Sci Rep 2015; 5:13633. [PMID: 26328547 PMCID: PMC4556962 DOI: 10.1038/srep13633] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
Memories can be destabilized by the reexposure to the training context, and may reconsolidate into a modified engram. Reconsolidation relies on some particular molecular mechanisms involving LVGCCs and GluN2B-containing NMDARs. In this study we investigate the interference caused by the presence of a distractor - a brief, unanticipated stimulus that impair a fear memory expression - during the reactivation session, and tested the hypothesis that this disruptive effect relies on a reconsolidation process. Rats previously trained in the contextual fear conditioning (CFC) were reactivated in the presence or absence of a distractor stimulus. In the test, groups reactivated in the original context with distractor displayed a reduction of the freezing response lasting up to 20 days. To check for the involvement of destabilization / reconsolidation mechanisms, we studied the effect of systemic nimodipine (a L-VGCC blocker) or intra-CA1 ifenprodil (a selective GluN2B/NMDAR antagonist) infused right before the reactivation session. Both treatments were able to prevent the disruptive effect of distraction. Ifenprodil results also bolstered the case for hippocampus as the putative brain structure hosting this phenomenon. Our results provide some evidence in support of a behavioral, non-invasive procedure that was able to disrupt an aversive memory in a long-lasting way.
Collapse
Affiliation(s)
- Ana Paula Crestani
- Psychobiology and Neurocomputation Lab, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Flávia Zacouteguy Boos
- Psychobiology and Neurocomputation Lab, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputation Lab, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Ordoñez Sierra
- Psychobiology and Neurocomputation Lab, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiana Santana
- Psychobiology and Neurocomputation Lab, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Johanna Marcela Duran Molina
- Psychobiology and Neurocomputation Lab, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lindsey de Freitas Cassini
- Psychobiology and Neurocomputation Lab, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Psychobiology and Neurocomputation Lab, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jorge Alberto Quillfeldt
- Psychobiology and Neurocomputation Lab, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
29
|
Reconsolidation allows fear memory to be updated to a less aversive level through the incorporation of appetitive information. Neuropsychopharmacology 2015; 40:315-26. [PMID: 25027331 PMCID: PMC4443944 DOI: 10.1038/npp.2014.174] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 06/11/2014] [Accepted: 06/26/2014] [Indexed: 11/08/2022]
Abstract
The capacity to adapt to new situations is one of the most important features of memory. When retrieved, memories may undergo a labile state that is sensitive to modification. This process, called reconsolidation, can lead to memory updating through the integration of new information into a previously consolidated memory background. Thus reconsolidation provides the opportunity to modify an undesired fear memory by updating its emotional valence to a less aversive level. Here we evaluated whether a fear memory can be reinterpreted by the concomitant presentation of an appetitive stimulus during its reactivation, hindering fear expression. We found that memory reactivation in the presence of appetitive stimuli resulted in the suppression of a fear response. In addition, fear expression was not amenable to reinstatement, spontaneous recovery, or rapid reacquisition. Such effect was prevented by either systemic injection of nimodipine or intra-hippocampal infusion of ifenprodil, indicating that memory updating was mediated by a reconsolidation mechanism relying on hippocampal neuronal plasticity. Taken together, this study shows that reconsolidation allows for a 're-signification' of unwanted fear memories through the incorporation of appetitive information. It brings a new promising cognitive approach to treat fear-related disorders.
Collapse
|
30
|
Jarome TJ, Lubin FD. Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol Learn Mem 2014; 115:116-27. [PMID: 25130533 PMCID: PMC4250295 DOI: 10.1016/j.nlm.2014.08.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
31
|
Rossato JI, Köhler CA, Radiske A, Lima RH, Bevilaqua LRM, Cammarota M. State-dependent effect of dopamine D₁/D₅ receptors inactivation on memory destabilization and reconsolidation. Behav Brain Res 2014; 285:194-9. [PMID: 25219363 DOI: 10.1016/j.bbr.2014.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/31/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
Object recognition memories (ORM) can incorporate new information upon reactivation. This update initially involves destabilization of the original memory, which is followed by restabilization of the upgraded engram through a reconsolidation process that requires gene expression and protein synthesis in the hippocampus. We found that when given in dorsal CA1 either immediately after training or 15 min before ORM reactivation in the presence of a novel object, the dopamine D1/D5 receptor antagonist SCH23390 did not affect ORM consolidation, expression or retention but impeded the amnesia caused by the post-retrieval administration of the mRNA synthesis inhibitor α-amanitin or the protein synthesis blocker anisomycin. This anti-amnesic effect was not observed when SCH23390 was given immediately after training and again 15 min before memory reactivation. Our results demonstrate that hippocampal D1/D5 receptors are not needed for formation, retrieval or post-retrieval restabilization of the ORM trace but are essential for its destabilization when reactivation occurs together with the incorporation of new information into the original memory. Importantly, they also suggest that reenactment of the animal's post-learning neurochemical milieu at the moment of memory reactivation can be a boundary condition for reconsolidation.
Collapse
Affiliation(s)
- Janine I Rossato
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Cristiano A Köhler
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Ramón H Lima
- Center for Biosciences - Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Lia R M Bevilaqua
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.
| |
Collapse
|
32
|
Delorenzi A, Maza FJ, Suárez LD, Barreiro K, Molina VA, Stehberg J. Memory beyond expression. ACTA ACUST UNITED AC 2014; 108:307-22. [PMID: 25102126 DOI: 10.1016/j.jphysparis.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
The idea that memories are not invariable after the consolidation process has led to new perspectives about several mnemonic processes. In this framework, we review our studies on the modulation of memory expression during reconsolidation. We propose that during both memory consolidation and reconsolidation, neuromodulators can determine the probability of the memory trace to guide behavior, i.e. they can either increase or decrease its behavioral expressibility without affecting the potential of persistent memories to be activated and become labile. Our hypothesis is based on the findings that positive modulation of memory expression during reconsolidation occurs even if memories are behaviorally unexpressed. This review discusses the original approach taken in the studies of the crab Neohelice (Chasmagnathus) granulata, which was then successfully applied to test the hypothesis in rodent fear memory. Data presented offers a new way of thinking about both weak trainings and experimental amnesia: memory retrieval can be dissociated from memory expression. Furthermore, the strategy presented here allowed us to show in human declarative memory that the periods in which long-term memory can be activated and become labile during reconsolidation exceeds the periods in which that memory is expressed, providing direct evidence that conscious access to memory is not needed for reconsolidation. Specific controls based on the constraints of reminders to trigger reconsolidation allow us to distinguish between obliterated and unexpressed but activated long-term memories after amnesic treatments, weak trainings and forgetting. In the hypothesis discussed, memory expressibility--the outcome of experience-dependent changes in the potential to behave--is considered as a flexible and modulable attribute of long-term memories. Expression seems to be just one of the possible fates of re-activated memories.
Collapse
Affiliation(s)
- A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - L D Suárez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - K Barreiro
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - V A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IFEC-CONICET (X5000HUA), Argentina.
| | - J Stehberg
- Laboratorio de Neurobiología, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Chile.
| |
Collapse
|
33
|
Neuropharmacology of memory consolidation and reconsolidation: Insights on central cholinergic mechanisms. ACTA ACUST UNITED AC 2014; 108:286-91. [PMID: 24819880 DOI: 10.1016/j.jphysparis.2014.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 11/23/2022]
Abstract
Central cholinergic system is critically involved in all known memory processes. Endogenous acetylcholine release by cholinergic neurons is necessary for modulation of acquisition, encoding, consolidation, reconsolidation, extinction, retrieval and expression. Experiments from our laboratory are mainly focused on elucidating the mechanisms by which acetylcholine modulates memory processes. Blockade of hippocampal alpha-7-nicotinic receptors (α7-nAChRs) with the antagonist methyllycaconitine impairs memory reconsolidation. However, the administration of a α7-nAChR agonist (choline) produce a paradoxical modulation, causing memory enhancement in mice trained with a weak footshock, but memory impairment in animals trained with a strong footshock. All these effects are long-lasting, and depend on the age of the memory trace. This review summarizes and discusses some of our recent findings, particularly regarding the involvement of α7-nAChRs on memory reconsolidation.
Collapse
|