1
|
Sex-Specific Regulatory Systems for Dopamine Production in the Honey Bee. INSECTS 2022; 13:insects13020128. [PMID: 35206702 PMCID: PMC8878259 DOI: 10.3390/insects13020128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary In this review, we describe sex-specific differences in the regulatory systems for dopamine production in the brains of social insects, focusing on the honey bee. Dopamine has a crucial role in the promotion of reproduction in both sexes of the honey bee and is a key substance for understanding the mechanisms underlying the reproductive division of labor in females. Studies associated with dopamine regulation have been performed mainly in females, with less of a focus on its regulation in males. In social insects, males are specialized for reproduction and do not exhibit division of labor; however, they have evolved to adapt their social system and have acquired/discarded physiological and behavioral characteristics. Therefore, studies exploring the dopaminergic system in males can contribute to our understanding of social adaptation in males. We integrate findings related to dopamine in both honey bee sexes and provide insights into the physiology involved in dopaminergic systems in social insects. Abstract Dopamine has multiple functions in the modulation of social behavior and promotion of reproduction in eusocial Hymenoptera. In the honey bee, there are sex-specific differences in the regulation of dopamine production in the brain. These different dopaminergic systems might contribute to the maintenance of sex-specific behaviors and physiology. However, it is still not fully understood how the dopaminergic system in the brain is regulated by endocrinal factors and social stimuli in the colony. In this review, we focus on the regulation of dopamine production in queens, workers, and males in the honey bee. Dopamine production can be controlled by queen substance, juvenile hormone, and exogenous tyrosine from food. Queens can control dopamine production in workers via queen substance, whereas workers can manipulate the supply of tyrosine, a precursor of dopamine, to queens and males. The regulation of dopamine production through social interaction might affect the reproductive states of colony members and maintain sex-specific behaviors in unpredictable environments.
Collapse
|
2
|
Matsushima K, Watanabe T, Sasaki K. Functional gene expression of dopamine receptors in the male reproductive organ during sexual maturation in the honey bee (Apis mellifera L.). JOURNAL OF INSECT PHYSIOLOGY 2019; 112:9-14. [PMID: 30471250 DOI: 10.1016/j.jinsphys.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/16/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Dopamine is a potential integrator between the central nervous system and reproductive system in insects. To test for a possible action of dopamine on the male reproductive organ via hemolymph in honey bees, relative expression levels of dopamine receptor genes and second messenger levels responding to dopamine in the reproductive organ were quantified. Protein content of the three parts of the reproductive organ (testes, seminal vesicles, and mucus glands) differed depending on the age of bees: the protein content of the testes decreased, whereas that of the seminal vesicles and mucus glands increased as males aged. Relative expression levels of dopamine receptor genes (Amdop1, Amdop2, Amdop3 and Amgpcr19) in each part of the reproductive organ were detected and were lower than those in the brain. Expression of all these genes was significantly higher in the seminal vesicles than in testes and mucus glands. Expression of Amgpcr19 was significantly higher in testes of 8-day-old males than in males of other ages, and was highest in the seminal vesicles of 4-day-old males. Cyclic adenosine monophosphate (cAMP) levels responding to dopamine in seminal vesicles were significantly higher in 10-3 M dopamine immersion than in 10-4 M, 10-5 M dopamine, and controls. However, no significant differences in cAMP levels between control and dopamine immersion were detected in testes and mucus glands. These results suggest that the dopamine receptors in seminal vesicles can be driven by dopamine for reproduction, including sperm transfer and storage in the male reproductive organ.
Collapse
Affiliation(s)
- Keisuke Matsushima
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Tomohiro Watanabe
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo 194-8610, Japan.
| |
Collapse
|
3
|
Changes in responsiveness to allatostatin treatment accompany shifts in stress reactivity in young worker honey bees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 205:51-59. [DOI: 10.1007/s00359-018-1302-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
|
4
|
Sasaki K, Ugajin A, Harano KI. Caste-specific development of the dopaminergic system during metamorphosis in female honey bees. PLoS One 2018; 13:e0206624. [PMID: 30372493 PMCID: PMC6205643 DOI: 10.1371/journal.pone.0206624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/16/2018] [Indexed: 01/02/2023] Open
Abstract
Caste-specific differences in the dopaminergic systems of social insects assist in maintaining caste-specific behavior. To determine how caste differences in the honey bee occur during metamorphosis, a number of comparative analyses between castes were performed including comprehensive quantification of: levels of dopamine and its metabolite in the brain, the gene expression levels of enzymes involved in dopamine biosynthesis and conversion as well as expression levels of dopamine receptors and a dopamine transporter. Dopamine levels standardized to the protein contents of a whole brain at the day of eclosion in queens were 3.6-fold higher than those in workers. Dopamine levels increased until eclosion (7 days) in queens, whereas those in workers increased until 5–6 days before eclosion and then maintained until eclosion (10 days). These caste-specific dopamine dynamics in the brain were supported by the higher expression of genes (Amddc and Amth) encoding enzymes involved in dopamine synthesis in queens. The distribution of cells expressing Amddc in the brain revealed that soma clusters of dopaminergic cells were similar between castes at 7–8 days after pupation, suggesting the upregulation of Amddc expression in some cells in queens rather than addition of cell clusters. In contrast, genes encoding dopamine receptors were downregulated in queens or showed similar expression levels between castes. The expression of genes encoding dopamine transporters did not differ between castes. These results reveal the developmental process of caste-specific dopaminergic systems during metamorphosis in the honey bee, suggesting caste-specific behavior and division of reproduction in this highly eusocial species.
Collapse
Affiliation(s)
- Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
- * E-mail:
| | - Atsushi Ugajin
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Ken-ichi Harano
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
5
|
Sugimachi S, Matsumoto Y, Mizunami M, Okada J. Effects of Caffeine on Olfactory Learning in Crickets. Zoolog Sci 2016; 33:513-519. [DOI: 10.2108/zs150209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Abramson CI, Dinges CW, Wells H. Operant Conditioning in Honey Bees (Apis mellifera L.): The Cap Pushing Response. PLoS One 2016; 11:e0162347. [PMID: 27626797 PMCID: PMC5023167 DOI: 10.1371/journal.pone.0162347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/22/2016] [Indexed: 11/27/2022] Open
Abstract
The honey bee has been an important model organism for studying learning and memory. More recently, the honey bee has become a valuable model to understand perception and cognition. However, the techniques used to explore psychological phenomena in honey bees have been limited to only a few primary methodologies such as the proboscis extension reflex, sting extension reflex, and free flying target discrimination-tasks. Methods to explore operant conditioning in bees and other invertebrates are not as varied as with vertebrates. This may be due to the availability of a suitable response requirement. In this manuscript we offer a new method to explore operant conditioning in honey bees: the cap pushing response (CPR). We used the CPR to test for difference in learning curves between novel auto-shaping and more traditional explicit-shaping. The CPR protocol requires bees to exhibit a novel behavior by pushing a cap to uncover a food source. Using the CPR protocol we tested the effects of both explicit-shaping and auto-shaping techniques on operant conditioning. The goodness of fit and lack of fit of these data to the Rescorla-Wagner learning-curve model, widely used in classical conditioning studies, was tested. The model fit well to both control and explicit-shaping results, but only for a limited number of trials. Learning ceased rather than continuing to asymptotically approach the physiological most accurate possible. Rate of learning differed between shaped and control bee treatments. Learning rate was about 3 times faster for shaped bees, but for all measures of proficiency control and shaped bees reached the same level. Auto-shaped bees showed one-trial learning rather than the asymptotic approach to a maximal efficiency. However, in terms of return-time, the auto-shaped bees’ learning did not carry over to the covered-well test treatments.
Collapse
Affiliation(s)
- Charles I. Abramson
- Laboratory of Comparative Psychology and Behavioral Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| | - Christopher W. Dinges
- Laboratory of Comparative Psychology and Behavioral Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Harrington Wells
- Department of Biology, University of Tulsa, Tulsa, Oklahoma, United States of America
| |
Collapse
|
7
|
Kaneko K, Suenami S, Kubo T. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel 'middle-type' Kenyon cells. ZOOLOGICAL LETTERS 2016; 2:14. [PMID: 27478620 PMCID: PMC4967334 DOI: 10.1186/s40851-016-0051-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/18/2016] [Indexed: 05/23/2023]
Abstract
In the honeybee (Apis mellifera L.), it has long been thought that the mushroom bodies, a higher-order center in the insect brain, comprise three distinct subtypes of intrinsic neurons called Kenyon cells. In class-I large-type Kenyon cells and class-I small-type Kenyon cells, the somata are localized at the edges and in the inner core of the mushroom body calyces, respectively. In class-II Kenyon cells, the somata are localized at the outer surface of the mushroom body calyces. The gene expression profiles of the large- and small-type Kenyon cells are distinct, suggesting that each exhibits distinct cellular characteristics. We recently identified a novel gene, mKast (middle-type Kenyon cell-preferential arrestin-related gene-1), which has a distinctive expression pattern in the Kenyon cells. Detailed expression analyses of mKast led to the discovery of novel 'middle-type' Kenyon cells characterized by their preferential mKast-expression in the mushroom bodies. The somata of the middle-type Kenyon cells are localized between the large- and small-type Kenyon cells, and the size of the middle-type Kenyon cell somata is intermediate between that of large- and small-type Kenyon cells. Middle-type Kenyon cells appear to differentiate from the large- and/or small-type Kenyon cell lineage(s). Neural activity mapping using an immediate early gene, kakusei, suggests that the small-type and some middle-type Kenyon cells are prominently active in the forager brain, suggesting a potential role in processing information during foraging flight. Our findings indicate that honeybee mushroom bodies in fact comprise four types of Kenyon cells with different molecular and cellular characteristics: the previously known class-I large- and small-type Kenyon cells, class-II Kenyon cells, and the newly identified middle-type Kenyon cells described in this review. As the cellular characteristics of the middle-type Kenyon cells are distinct from those of the large- and small-type Kenyon cells, their careful discrimination will be required in future studies of honeybee Kenyon cell subtypes. In this review, we summarize recent progress in analyzing the gene expression profiles and neural activities of the honeybee Kenyon cell subtypes, and discuss possible roles of each Kenyon cell subtype in the honeybee brain.
Collapse
Affiliation(s)
- Kumi Kaneko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
8
|
Lagisz M, Mercer AR, de Mouzon C, Santos LLS, Nakagawa S. Association of Amine-Receptor DNA Sequence Variants with Associative Learning in the Honeybee. Behav Genet 2015; 46:242-51. [PMID: 26410688 DOI: 10.1007/s10519-015-9749-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
Abstract
Octopamine- and dopamine-based neuromodulatory systems play a critical role in learning and learning-related behaviour in insects. To further our understanding of these systems and resulting phenotypes, we quantified DNA sequence variations at six loci coding octopamine-and dopamine-receptors and their association with aversive and appetitive learning traits in a population of honeybees. We identified 79 polymorphic sequence markers (mostly SNPs and a few insertions/deletions) located within or close to six candidate genes. Intriguingly, we found that levels of sequence variation in the protein-coding regions studied were low, indicating that sequence variation in the coding regions of receptor genes critical to learning and memory is strongly selected against. Non-coding and upstream regions of the same genes, however, were less conserved and sequence variations in these regions were weakly associated with between-individual differences in learning-related traits. While these associations do not directly imply a specific molecular mechanism, they suggest that the cross-talk between dopamine and octopamine signalling pathways may influence olfactory learning and memory in the honeybee.
Collapse
Affiliation(s)
- Malgorzata Lagisz
- Department of Zoology, University of Otago, Otago, Dunedin, New Zealand. .,School of BEES, Evolution & Ecology Research Centre, The University of New South Wales, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Alison R Mercer
- Department of Zoology, University of Otago, Otago, Dunedin, New Zealand
| | | | - Luana L S Santos
- Department of Zoology, University of Otago, Otago, Dunedin, New Zealand
| | - Shinichi Nakagawa
- Department of Zoology, University of Otago, Otago, Dunedin, New Zealand.,School of BEES, Evolution & Ecology Research Centre, The University of New South Wales, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Juvenile hormone enhances aversive learning performance in 2-day old worker honey bees while reducing their attraction to queen mandibular pheromone. PLoS One 2014; 9:e112740. [PMID: 25390885 PMCID: PMC4229236 DOI: 10.1371/journal.pone.0112740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that exposing young worker bees (Apis mellifera) to queen mandibular pheromone (QMP) reduces their aversive learning performance, while enhancing their attraction to QMP. As QMP has been found to reduce the rate of juvenile hormone (JH) synthesis in worker bees, we examined whether aversive learning in 2-day old workers exposed to QMP from the time of adult emergence could be improved by injecting JH (10 µg in a 2 µl volume) into the haemolymph. We examined in addition, the effects of JH treatment on worker attraction to QMP, and on the levels of expression of amine receptor genes in the antennae, as well as in the mushroom bodies of the brain. We found that memory acquisition and 1-hour memory recall were enhanced by JH. In contrast, JH treatment reduced the bees' attraction towards a synthetic strip impregnated with QMP (Bee Boost). Levels of expression of the dopamine receptor gene Amdop1 were significantly lower in the mushroom bodies of JH-treated bees than in bees treated with vehicle alone (acetone diluted with bee ringer). Expression of the octopamine receptor gene, Amoa1, in this brain region was also affected by JH treatment, and in the antennae, Amoa1 transcript levels were significantly lower in JH-treated bees compared to controls. The results of this study suggest that QMP's effects on JH synthesis may contribute to reducing aversive learning performance and enhancing attraction to QMP in young worker bees.
Collapse
|
10
|
Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc Natl Acad Sci U S A 2014; 111:16353-8. [PMID: 25368171 DOI: 10.1073/pnas.1410488111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding. Despite intense research efforts, the identity of the molecular triggers that cause the postmating switch in females, inducing a permanent refractoriness to further mating and triggering egg-laying, remains elusive. Here we show that the male-transferred steroid hormone 20-hydroxyecdysone (20E) is a key regulator of monandry and oviposition in An. gambiae. When sexual transfer of 20E is impaired by partial inactivation of the hormone and inhibition of its biosynthesis in males, oviposition and refractoriness to further mating in the female are strongly reduced. Conversely, mimicking sexual delivery by injecting 20E into virgin females switches them to an artificial mated status, triggering egg-laying and reducing susceptibility to copulation. Sexual transfer of 20E appears to incapacitate females physically from receiving seminal fluids by a second male. Comparative analysis of microarray data from females after mating and after 20E treatment indicates that 20E-regulated molecular pathways likely are implicated in the postmating switch, including cytoskeleton and musculature-associated genes that may render the atrium impenetrable to additional mates. By revealing signals and pathways shaping key processes in the An. gambiae reproductive biology, our data offer new opportunities for the control of natural populations of malaria vectors.
Collapse
|
11
|
Abrieux A, Duportets L, Debernard S, Gadenne C, Anton S. The GPCR membrane receptor, DopEcR, mediates the actions of both dopamine and ecdysone to control sex pheromone perception in an insect. Front Behav Neurosci 2014; 8:312. [PMID: 25309365 PMCID: PMC4162375 DOI: 10.3389/fnbeh.2014.00312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/25/2014] [Indexed: 12/31/2022] Open
Abstract
Olfactory information mediating sexual behavior is crucial for reproduction in many animals, including insects. In male moths, the macroglomerular complex (MGC) of the primary olfactory center, the antennal lobe (AL) is specialized in the treatment of information on the female-emitted sex pheromone. Evidence is accumulating that modulation of behavioral pheromone responses occurs through neuronal plasticity via the action of hormones and/or catecholamines. We recently showed that a G-protein-coupled receptor (GPCR), AipsDopEcR, with its homologue known in Drosophila for its double affinity to the main insect steroid hormone 20-hydroxyecdysone (20E), and dopamine (DA), present in the ALs, is involved in the behavioral response to pheromone in the moth, Agrotis ipsilon. Here we tested the role of AipsDopEcR as compared to nuclear 20E receptors in central pheromone processing combining receptor inhibition with intracellular recordings of AL neurons. We show that the sensitivity of AL neurons for the pheromone in males decreases strongly after AipsDopEcR-dsRNA injection but also after inhibition of nuclear 20E receptors. Moreover we tested the involvement of 20E and DA in the receptor-mediated behavioral modulation in wind tunnel experiments, using ligand applications and receptor inhibition treatments. We show that both ligands are necessary and act on AipsDopEcR-mediated behavior. Altogether these results indicate that the GPCR membrane receptor, AipsDopEcR, controls sex pheromone perception through the action of both 20E and DA in the central nervous system, probably in concert with 20E action through nuclear receptors.
Collapse
Affiliation(s)
- Antoine Abrieux
- Neuroéthologie-RCIM, INRA/Université d'Angers, UPRES-EA 2647 USC INRA 1330, SFR QUASAV 4207 Beaucouzé, France ; Institut d'Ecologie et des Sciences de l'Environnement IEES Paris, Université Pierre et Marie Curie, UMR 7618 Paris, France
| | - Line Duportets
- Institut d'Ecologie et des Sciences de l'Environnement IEES Paris, Université Pierre et Marie Curie, UMR 7618 Paris, France ; Service d'Enseignement de Biologie Animale, Université Paris-Sud Orsay, France
| | - Stéphane Debernard
- Institut d'Ecologie et des Sciences de l'Environnement IEES Paris, Université Pierre et Marie Curie, UMR 7618 Paris, France
| | - Christophe Gadenne
- Neuroéthologie-RCIM, INRA/Université d'Angers, UPRES-EA 2647 USC INRA 1330, SFR QUASAV 4207 Beaucouzé, France
| | - Sylvia Anton
- Neuroéthologie-RCIM, INRA/Université d'Angers, UPRES-EA 2647 USC INRA 1330, SFR QUASAV 4207 Beaucouzé, France
| |
Collapse
|
12
|
Tedjakumala SR, Aimable M, Giurfa M. Pharmacological modulation of aversive responsiveness in honey bees. Front Behav Neurosci 2014; 7:221. [PMID: 24431993 PMCID: PMC3882874 DOI: 10.3389/fnbeh.2013.00221] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022] Open
Abstract
Within a honey bee colony, individuals performing different tasks exhibit different sensitivities to noxious stimuli. Noxious-stimulus sensitivity can be quantified in harnessed bees by measuring the sting extension response (SER) to a series of increasing voltages. Biogenic amines play a crucial role in the control of insect responsiveness. Whether or not these neurotransmitters affect the central control of aversive responsiveness, and more specifically of electric-shock responsiveness, remains unknown. Here we studied the involvement of the biogenic amines octopamine, dopamine and serotonin, and of the ecdysteroid 20-hydroxyecdisone in the central control of sting responsiveness to electric shocks. We injected pharmacological antagonists of these signaling pathways into the brain of harnessed bees and determined the effect of blocking these different forms of neurotransmission on shock responsiveness. We found that both octopamine and 20-hydroxyecdisone are dispensable for shock responsiveness while dopamine and serotonin act as down-regulators of sting responsiveness. As a consequence, antagonists of these two biogenic amines induce an increase in shock responsiveness to shocks of intermediate voltage; serotonin, can also increase non-specific responsiveness. We suggest that different classes of dopaminergic neurons exist in the bee brain and we define at least two categories: an instructive class mediating aversive labeling of conditioned stimuli in associative learning, and a global gain-control class which down-regulates responsiveness upon perception of noxious stimuli. Serotonergic signaling together with down-regulating dopaminergic signaling may play an essential role in attentional processes by suppressing responses to irrelevant, non-predictive stimuli, thereby allowing efficient behavioral performances.
Collapse
Affiliation(s)
- Stevanus R Tedjakumala
- Centre National de la Recherche Scientifique (CNRS), Research Center on Animal Cognition (UMR5169) Toulouse, France ; University Paul-Sabatier, Research Center on Animal Cognition (UMR5169) Toulouse, France
| | - Margaux Aimable
- Centre National de la Recherche Scientifique (CNRS), Research Center on Animal Cognition (UMR5169) Toulouse, France ; University Paul-Sabatier, Research Center on Animal Cognition (UMR5169) Toulouse, France
| | - Martin Giurfa
- Centre National de la Recherche Scientifique (CNRS), Research Center on Animal Cognition (UMR5169) Toulouse, France ; University Paul-Sabatier, Research Center on Animal Cognition (UMR5169) Toulouse, France
| |
Collapse
|
13
|
Tedjakumala SR, Giurfa M. Rules and mechanisms of punishment learning in honey bees: the aversive conditioning of the sting extension response. J Exp Biol 2013; 216:2985-97. [DOI: 10.1242/jeb.086629] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Honeybees constitute established model organisms for the study of appetitive learning and memory. In recent years, the establishment of the technique of olfactory conditioning of the sting extension response (SER) has yielded new insights into the rules and mechanisms of aversive learning in insects. In olfactory SER conditioning, a harnessed bee learns to associate an olfactory stimulus as the conditioned stimulus with the noxious stimulation of an electric shock as the unconditioned stimulus. Here, we review the multiple aspects of honeybee aversive learning that have been uncovered using Pavlovian conditioning of the SER. From its behavioral principles and sensory variants to its cellular bases and implications for understanding social organization, we present the latest advancements in the study of punishment learning in bees and discuss its perspectives in order to define future research avenues and necessary improvements. The studies presented here underline the importance of studying honeybee learning not only from an appetitive but also from an aversive perspective, in order to uncover behavioral and cellular mechanisms of individual and social plasticity.
Collapse
Affiliation(s)
- Stevanus Rio Tedjakumala
- Université de Toulouse, UPS, Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
- Centre national de la recherche scientifique (CNRS), Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Martin Giurfa
- Université de Toulouse, UPS, Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
- Centre national de la recherche scientifique (CNRS), Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| |
Collapse
|