1
|
Mishchenko A. Outward potassium current in neurons of aestivated land snail Achatina fulica. BRAZ J BIOL 2024; 84:e283314. [PMID: 38958298 DOI: 10.1590/1519-6984.283314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 07/04/2024] Open
Abstract
Aestivation and hibernation represent distinct forms of animal quiescence, characterized by physiological changes, including ion composition. Intracellular ion flows play a pivotal role in eliciting alterations in membrane potential and facilitating cellular communication, while outward K+ currents aid in the restitution and upkeep of the resting membrane potential. This study explores the relationship between inward and outward currents during aestivation in Achatina fulica snails. Specimens were collected near MSUBIT University in Shenzhen and divided into two groups. The first group was kept on a lattice diet, while the second one consisted of aestivating individuals, that were deprived of food and water until a cork-like structure sealed their shells. Recording of current from isolated neurons were conducted using the single-electrode voltage clamp mode with an AxoPatch 200B amplifier. Electrophysiological recordings on pedal ganglia neurons revealed significant differences in the inactivation processes of the Ia and Ikdr components. Alterations in the Ikdr component may inhibit pacemaker activity in pedal ganglion neurons, potentially contributing to locomotion cessation in aestivated animals. The KS current remains unaffected during aestivation. Changes in slow K+ current components could disrupt the resting membrane potential, possibly leading to cell depolarization and influx of Ca2+ and Na+ ions, impacting cell homeostasis. Thus, maintaining the constancy of outward K+ current is essential for cell stability.
Collapse
Affiliation(s)
- A Mishchenko
- Shenzhen MSU-BIT University, Faculty of Biology, Shenzhen, China
| |
Collapse
|
2
|
Chatterji R, Khoury S, Salas E, Wainwright ML, Mozzachiodi R. Critical role of protein kinase G in the long-term balance between defensive and appetitive behaviors induced by aversive stimuli in Aplysia. Behav Brain Res 2020; 383:112504. [PMID: 31981653 DOI: 10.1016/j.bbr.2020.112504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/25/2022]
Abstract
This study investigated the signaling cascades involved in the long-term storage of the balance between defensive and appetitive behaviors observed when the mollusk Aplysia is exposed to aversive experience. In Aplysia, repeated trials of aversive stimuli induce concurrent sensitization of defensive withdrawal reflexes and suppression of feeding for at least 24 h. This long-term storage of the balance between withdrawal reflexes and feeding is sustained, at least in part, by increased excitability of the tail sensory neurons (SNs) controlling the withdrawal reflexes, and by decreased excitability of feeding decision-making neuron B51. Nitric oxide (NO) is required for the induction of both long-term sensitization and feeding suppression. At the cellular level, NO is also required for long-term decreased B51 excitability but not for long-term increased SN excitability. Here, we characterized the signaling cascade downstream of NO contributing to the long-term storage of the balance between withdrawal reflexes and feeding. We found protein kinase G (PKG) necessary for both long-term sensitization and feeding suppression, indicating that a NO-PKG cascade governs the long-term storage of the balance between defensive and appetitive responses in Aplysia. The role of PKG on feeding suppression was paralleled at the cellular level where a cGMP-PKG pathway was required for long-term decreased B51 excitability. In the defensive circuit, the cGMP-PKG pathway was not necessary for long-term increased SN excitability, suggesting that other cellular correlates of long-term sensitization might depend on the GMP-PKG cascade to sustain the behavioral change.
Collapse
Affiliation(s)
- Ruma Chatterji
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA; Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Sarah Khoury
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Emanuel Salas
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Marcy L Wainwright
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Riccardo Mozzachiodi
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA.
| |
Collapse
|
3
|
Farruggella J, Acebo J, Lloyd L, Wainwright ML, Mozzachiodi R. Role of nitric oxide in the induction of the behavioral and cellular changes produced by a common aversive stimulus in Aplysia. Behav Brain Res 2018; 360:341-353. [PMID: 30528940 DOI: 10.1016/j.bbr.2018.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Although it is well documented that exposure to aversive stimuli induces modulation of neural circuits and subsequent behavioral changes, the means by which an aversive stimulus concomitantly alters behaviors of different natures (e.g., defensive and appetitive) remains unclear. Here, we addressed this issue by using the learning-induced concurrent modulation of defensive and appetitive behaviors that occurs when the mollusk Aplysia is exposed to aversive stimuli. In Aplysia, aversive stimuli concomitantly enhance withdrawal reflexes (i.e., sensitization) and suppress feeding. Sensitization and feeding suppression, which are expressed in the short term and long term, depending on the training protocol, are accompanied by increased excitability of the tail sensory neurons (TSNs) controlling the withdrawal reflexes, and by decreased excitability of feeding decision-making neuron B51, respectively. Serotonin (5-HT) has been shown to mediate sensitization, but not feeding suppression. In this study, we examined which other neurotransmitter might be responsible for feeding suppression and its underlying cellular changes. Our results indicate that nitric oxide (NO) contributes to both short-term and long-term feeding suppression, as well as to the underlying decreased B51 excitability. NO was also necessary for the induction of long-term sensitization and for the expression of short-term increased TSN excitability in vitro, revealing a previously undocumented interaction between 5-HT and NO signaling cascades in sensitization. Overall, these results revealed a scenario in which multiple modulators contribute to the widespread changes induced by sensitizing stimuli in Aplysia.
Collapse
Affiliation(s)
- Jesse Farruggella
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Unit 5800, Corpus Christi, TX, 78412, USA
| | - Jonathan Acebo
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Unit 5800, Corpus Christi, TX, 78412, USA
| | - Leah Lloyd
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Unit 5800, Corpus Christi, TX, 78412, USA
| | - Marcy L Wainwright
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Unit 5800, Corpus Christi, TX, 78412, USA
| | - Riccardo Mozzachiodi
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Unit 5800, Corpus Christi, TX, 78412, USA.
| |
Collapse
|
4
|
Goldner A, Farruggella J, Wainwright ML, Mozzachiodi R. cGMP mediates short- and long-term modulation of excitability in a decision-making neuron in Aplysia. Neurosci Lett 2018; 683:111-118. [PMID: 29960055 DOI: 10.1016/j.neulet.2018.06.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/17/2018] [Accepted: 06/22/2018] [Indexed: 01/11/2023]
Abstract
In elementary neural circuits, changes in excitability can have a strong impact in the expression of a given behavior. One example is provided by B51, a neuron with decision-making properties in the feeding neural circuit of the mollusk Aplysia. The excitability of B51 is bidirectionally modulated by external and internal stimuli in a manner that is consistent with the corresponding induced changes in feeding behavior. For example, in operant reward learning, which up-regulates feeding, B51 excitability is increased via a cAMP-dependent mechanism. Conversely, following training protocols with aversive stimuli, which down-regulate feeding, B51 excitability is decreased. In this study, we tested the hypothesis that B51 decreased excitability may be mediated by another cyclic nucleotide, cGMP. Our results revealed that iontophoretic injection of cGMP was capable of inducing both short-term (45 min) and long-term (24 h) reduction of B51 excitability. We next investigated which biochemical trigger could increase cGMP cytosolic levels. The neurotransmitter nitric oxide was found to decrease B51 excitability through the activation of the soluble guanylyl cyclase. These findings indicate that a cGMP-dependent pathway modulates B51 excitability in a manner opposite of cAMP, indicating that distinct cyclic-nucleotide pathways bidirectionally regulate the excitability of a decision-making neuron.
Collapse
Affiliation(s)
- Amanda Goldner
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Jesse Farruggella
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Marcy L Wainwright
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Riccardo Mozzachiodi
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA.
| |
Collapse
|
5
|
Leod KAM, Seas A, Wainwright ML, Mozzachiodi R. Effects of internal and external factors on the budgeting between defensive and non-defensive responses in Aplysia. Behav Brain Res 2018; 349:177-185. [PMID: 29704600 DOI: 10.1016/j.bbr.2018.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Following exposure to aversive stimuli, organisms budget their behaviors by augmenting defensive responses and reducing/suppressing non-defensive behaviors. This budgeting process must be flexible to accommodate modifications in the animal's internal and/or external state that require the normal balance between defensive and non-defensive behaviors to be adjusted. When exposed to aversive stimuli, the mollusk Aplysia budgets its behaviors by concurrently enhancing defensive withdrawal reflexes (an elementary form of learning known as sensitization) and suppressing feeding. Sensitization and feeding suppression are consistently co-expressed following different training protocols and share common temporal domains, suggesting that they are interlocked. In this study, we attempted to uncouple the co-expression of sensitization and feeding suppression using: 1) manipulation of the animal's motivational state through prolonged food deprivation and 2) extended training with aversive stimuli that induces sensitization lasting for weeks. Both manipulations uncoupled the co-expression of the above behavioral changes. Prolonged food deprivation prevented the expression of sensitization, but not of feeding suppression. Following the extended training, sensitization and feeding suppression were co-expressed only for a limited time (i.e., 24 h), after which feeding returned to baseline levels as sensitization persisted for up to seven days. These findings indicate that sensitization and feeding suppression are not interlocked and that their co-expression can be uncoupled by internal (prolonged food deprivation) and external (extended aversive training) factors. The different strategies, by which the co-expression of sensitization and feeding suppression was altered, provide an example of how budgeting strategies triggered by an identical aversive experience can vary depending on the state of the organism.
Collapse
Affiliation(s)
- Kaitlyn A Mac Leod
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Alexandra Seas
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Marcy L Wainwright
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Riccardo Mozzachiodi
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA.
| |
Collapse
|
6
|
Weisz HA, Wainwright ML, Mozzachiodi R. A novel in vitro analog expressing learning-induced cellular correlates in distinct neural circuits. ACTA ACUST UNITED AC 2017; 24:331-340. [PMID: 28716953 PMCID: PMC5516688 DOI: 10.1101/lm.045229.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/12/2017] [Indexed: 01/29/2023]
Abstract
When presented with noxious stimuli, Aplysia exhibits concurrent sensitization of defensive responses, such as the tail-induced siphon withdrawal reflex (TSWR) and suppression of feeding. At the cellular level, sensitization of the TSWR is accompanied by an increase in the excitability of the tail sensory neurons (TSNs) that elicit the reflex, whereas feeding suppression is accompanied by decreased excitability of B51, a decision-making neuron in the feeding neural circuit. The goal of this study was to develop an in vitro analog coexpressing the above cellular correlates. We used a reduced preparation consisting of buccal, cerebral, and pleural-pedal ganglia, which contain the neural circuits controlling feeding and the TSWR, respectively. Sensitizing stimuli were delivered in vitro by electrical stimulation of afferent nerves. When trained with sensitizing stimuli, the in vitro analog expressed concomitant increased excitability in TSNs and decreased excitability in B51, which are consistent with the occurrence of sensitization and feeding suppression induced by in vivo training. This in vitro analog expressed both short-term (15 min) and long-term (24 h) excitability changes in TSNs and B51, depending on the amount of training administered. Finally, in vitro application of serotonin increased TSN excitability without altering B51 excitability, mirroring the in vivo application of the monoamine that induces sensitization, but not feeding suppression.
Collapse
Affiliation(s)
- Harris A Weisz
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Marcy L Wainwright
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Riccardo Mozzachiodi
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| |
Collapse
|