1
|
Kendek A, Sandron A, Lambooij JP, Colmenares S, Pociunaite S, Gooijers I, de Groot L, Karpen G, Janssen A. DNA double-strand break movement in heterochromatin depends on the histone acetyltransferase dGcn5. Nucleic Acids Res 2024; 52:11753-11767. [PMID: 39258543 PMCID: PMC11514474 DOI: 10.1093/nar/gkae775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Cells employ diverse strategies to repair double-strand breaks (DSBs), a dangerous form of DNA damage that threatens genome integrity. Eukaryotic nuclei consist of different chromatin environments, each displaying distinct molecular and biophysical properties that can significantly influence the DSB-repair process. DSBs arising in the compact and silenced heterochromatin domains have been found to move to the heterochromatin periphery in mouse and Drosophila to prevent aberrant recombination events. However, it is poorly understood how chromatin components, such as histone post-translational modifications, contribute to these DSB movements within heterochromatin. Using irradiation as well as locus-specific DSB induction in Drosophila tissues and cultured cells, we find enrichment of histone H3 lysine 9 acetylation (H3K9ac) at DSBs in heterochromatin but not euchromatin. We find this increase is mediated by the histone acetyltransferase dGcn5, which rapidly localizes to heterochromatic DSBs. Moreover, we demonstrate that in the absence of dGcn5, heterochromatic DSBs display impaired recruitment of the SUMO E3 ligase Nse2/Qjt and fail to relocate to the heterochromatin periphery to complete repair. In summary, our results reveal a previously unidentified role for dGcn5 and H3K9ac in heterochromatic DSB repair and underscore the importance of differential chromatin responses at heterochromatic and euchromatic DSBs to promote safe repair.
Collapse
Affiliation(s)
- Apfrida Kendek
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Arianna Sandron
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Jan-Paul Lambooij
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Serafin U Colmenares
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,Berkeley, California, USA
| | - Severina M Pociunaite
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Iris Gooijers
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Lars de Groot
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Gary H Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,Berkeley, California, USA
- Division of Biological Sciences and the Environment, Lawrence Berkeley National Laboratory, CA 94720, Berkeley, California, USA
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| |
Collapse
|
2
|
Josselyn SA, Tonegawa S. Memory engrams: Recalling the past and imagining the future. Science 2020; 367:367/6473/eaaw4325. [PMID: 31896692 DOI: 10.1126/science.aaw4325] [Citation(s) in RCA: 520] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1904, Richard Semon introduced the term "engram" to describe the neural substrate for storing memories. An experience, Semon proposed, activates a subset of cells that undergo off-line, persistent chemical and/or physical changes to become an engram. Subsequent reactivation of this engram induces memory retrieval. Although Semon's contributions were largely ignored in his lifetime, new technologies that allow researchers to image and manipulate the brain at the level of individual neurons has reinvigorated engram research. We review recent progress in studying engrams, including an evaluation of evidence for the existence of engrams, the importance of intrinsic excitability and synaptic plasticity in engrams, and the lifetime of an engram. Together, these findings are beginning to define an engram as the basic unit of memory.
Collapse
Affiliation(s)
- Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada. .,Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada
| | - Susumu Tonegawa
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Rojas-Benítez D, L. Allende M. Elongator Subunit 3 (Elp3) Is Required for Zebrafish Trunk Development. Int J Mol Sci 2020; 21:E925. [PMID: 32023806 PMCID: PMC7036906 DOI: 10.3390/ijms21030925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Transfer RNAs (tRNAs) are the most post-transcriptionally modified RNA species. Some of these modifications, especially the ones located in the anti-codon loop, are required for decoding capabilities of tRNAs. Such is the case for 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U), synthetized by the Elongator complex. Mutants for its sub-units display pleiotropic phenotypes. In this paper, we analyze the role of elp3 (Elongator catalytic sub-unit) in zebrafish development. We found that it is required for trunk development; elp3 knock-down animals presented diminished levels of mcm5s2U and sonic hedgehog (Shh) signaling activity. Activation of this pathway was sufficient to revert the phenotype caused by elp3 knockdown, indicating a functional relationship between Elongator and Shh through a yet unknown molecular mechanism.
Collapse
Affiliation(s)
- Diego Rojas-Benítez
- FONDAP Center for Genome Regulation (CGR), Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | | |
Collapse
|