1
|
Hurwitz I, Tam S, Jing J, Chiel HJ, Gill J, Susswein AJ. Multiple changes in connectivity between buccal ganglia mechanoafferents and motor neurons with different functions after learning that food is inedible in Aplysia. Learn Mem 2024; 31:a053882. [PMID: 38950977 PMCID: PMC11261210 DOI: 10.1101/lm.053882.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/19/2024] [Indexed: 07/03/2024]
Abstract
Changes caused by learning that a food is inedible in Aplysia were examined for fast and slow synaptic connections from the buccal ganglia S1 cluster of mechanoafferents to five followers, in response to repeated stimulus trains. Learning affected only fast connections. For these, unique patterns of change were present in each follower, indicating that learning differentially affects the different branches of the mechanoafferents to their followers. In some followers, there were increases in either excitatory or inhibitory connections, and in others, there were decreases. Changes in connectivity resulted from changes in the amplitude of excitation or inhibition, or as a result of the number of connections, or of both. Some followers also exhibited changes in either within or between stimulus train plasticity as a result of learning. In one follower, changes differed from the different areas of the S1 cluster. The patterns of changes in connectivity were consistent with the behavioral changes produced by learning, in that they would produce an increase in the bias to reject or to release food, and a decrease in the likelihood to respond to food.
Collapse
Affiliation(s)
- Itay Hurwitz
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Shlomit Tam
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School Life Sciences, Nanjing University, Jiangsu 210023, China
| | - Hillel J Chiel
- Departments of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
- Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Jeffrey Gill
- Departments of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Abraham J Susswein
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
2
|
Rogers SM, Gill JP, Skalski De Campos A, Wang KX, Kaza IV, Fan VX, Sutton GP, Chiel HJ. Scaling of buccal mass growth and muscle activation determine the duration of feeding behaviours in the marine mollusc Aplysia californica. J Exp Biol 2024; 227:jeb246551. [PMID: 38584490 PMCID: PMC11058693 DOI: 10.1242/jeb.246551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The mechanical forces experienced during movement and the time constants of muscle activation are important determinants of the durations of behaviours, which may both be affected by size-dependent scaling. The mechanics of slow movements in small animals are dominated by elastic forces and are thus quasistatic (i.e. always near mechanical equilibrium). Muscular forces producing movement and elastic forces resisting movement should scale identically (proportional to mass2/3), leaving the scaling of the time constant of muscle activation to play a critical role in determining behavioural duration. We tested this hypothesis by measuring the duration of feeding behaviours in the marine mollusc Aplysia californica whose body sizes spanned three orders of magnitude. The duration of muscle activation was determined by measuring the time it took for muscles to produce maximum force as A. californica attempted to feed on tethered inedible seaweed, which provided an in vivo approximation of an isometric contraction. The timing of muscle activation scaled with mass0.3. The total duration of biting behaviours scaled identically, with mass0.3, indicating a lack of additional mechanical effects. The duration of swallowing behaviour, however, exhibited a shallower scaling of mass0.17. We suggest that this was due to the allometric growth of the anterior retractor muscle during development, as measured by micro-computed tomography (micro-CT) scans of buccal masses. Consequently, larger A. californica did not need to activate their muscles as fully to produce equivalent forces. These results indicate that muscle activation may be an important determinant of the scaling of behavioural durations in quasistatic systems.
Collapse
Affiliation(s)
- Stephen M. Rogers
- Department of Life Sciences, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jeffrey P. Gill
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - Ana Skalski De Campos
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - Katherine X. Wang
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - Isha V. Kaza
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - Victoria X. Fan
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - Gregory P. Sutton
- Department of Life Sciences, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Hillel J. Chiel
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| |
Collapse
|
3
|
Levy M, Jing J, Susswein AJ. An in vitro analog of learning that food is inedible in Aplysia: decreased responses to a transmitter signaling food after pairing with transmitters signaling failed swallowing. Learn Mem 2023; 30:278-281. [PMID: 37852783 PMCID: PMC10631127 DOI: 10.1101/lm.053867.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
An in vitro analog of learning that a food is inedible provided insight into mechanisms underlying the learning. Aplysia learn to stop responding to a food when they attempt but fail to swallow it. Pairing a cholinergic agonist with an NO donor or histamine in the Aplysia cerebral ganglion produced significant decreases in fictive feeding in response to the cholinergic agonist alone. Acetylcholine (ACh) is the transmitter of chemoreceptors sensing food touching the lips. Nitric oxide (NO) and histamine (HA) signal failed attempts to swallow food. Reduced responses to the cholinergic agonist after pairing with NO or HA indicate that learning partially arises via a decreased response to ACh in the cerebral ganglion.
Collapse
Affiliation(s)
- Miryam Levy
- Gonda (Goldschmied) Brain Research Center, Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School Life Sciences, Nanjing University, Jiangsu 210023, China
| | - Abraham J Susswein
- Gonda (Goldschmied) Brain Research Center, Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
4
|
Randolph EC, Fieber LA. Improvements in operant memory of Aplysia are correlated with age and specific gene expression. Front Behav Neurosci 2023; 17:1221794. [PMID: 37936650 PMCID: PMC10626442 DOI: 10.3389/fnbeh.2023.1221794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
The transcription factor Aplysia CCAAT/enhancer binding protein (ApC/EBP) is expressed as an immediate early gene in the cAMP responsive element binding protein (CREB) mediated gene cascade, and it has essential functions in the synaptic consolidation of memory following a learning event. Synaptic consolidation primarily involves morphological changes at neuronal synapses, which are facilitated through the reorganization of the actin and microtubular cytoarchitecture of the cell. During early nervous system development, the transmembrane synaptic protein teneurin acts directly upon neuronal presynaptic microtubules and postsynaptic spectrin-based cytoskeletons to facilitate the creation of new synapses. It is reasonable to hypothesize that teneurin may also be linked to learning-induced synaptic changes and is a potential candidate to be a later gene expressed in the CREB-mediated gene cascade downstream of ApC/EBP. To assess the role of ApC/EBP and teneurin in learning and memory in the marine snail Aplysia californica, young (age 7-8 months) and aged (age 13-15 months; aging stage AII) siblings of Aplysia were trained in an operant conditioning paradigm-learning food is inedible (LFI)-over 2 days, during which they learned to modify the feeding reflex. Aged Aplysia had enhanced performance of the LFI task on the second day than younger siblings although far more aged animals were excluded from the analysis because of the initial failure in learning to recognize the inedible probe. After 2 days of training, ApC/EBP isoform X1 mRNA and teneurin mRNA were quantified in selected neurons of the buccal ganglia, the locus of neural circuits in LFI. Teneurin expression was elevated in aged Aplysia compared to young siblings regardless of training. ApC/EBP isoform X1 expression was significantly higher in untrained aged animals than in untrained young siblings but decreased in trained aged animals compared to untrained aged animals. Elevated levels of ApC/EBP isoform X1 and teneurin mRNA before training may have contributed to the enhancement of LFI performance in the aged animals that successfully learned.
Collapse
Affiliation(s)
| | - Lynne A. Fieber
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School, Miami, FL, United States
| |
Collapse
|
5
|
Cropper EC, Perkins M, Jing J. Persistent modulatory actions and task switching in the feeding network of Aplysia. Curr Opin Neurobiol 2023; 82:102775. [PMID: 37625344 PMCID: PMC10530010 DOI: 10.1016/j.conb.2023.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The activity of multifunctional networks is configured by neuromodulators that exert persistent effects. This raises a question, does this impact the ability of a network to switch from one type of activity to another? We review studies that have addressed this question in the Aplysia feeding circuit. Task switching in this system occurs "asymmetrically." When there is a switch from egestion to ingestion neuromodulation impedes switching (creates a "negative bias"). When there is a switch from ingestion to egestion the biasing is "positive." Ingestion promotes subsequent egestion. We contrast mechanisms responsible for the two types of biasing and show that the observed asymmetry is a consequence of the fact that there is more than one set of egestive circuit parameters.
Collapse
Affiliation(s)
- Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Matthew Perkins
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Lee CA, Watson WH. In the sea slug Melibe leonina the posterior nerves communicate stomach distention to inhibit feeding and modify oral hood movements. Front Physiol 2022; 13:1047106. [PMID: 36505045 PMCID: PMC9727288 DOI: 10.3389/fphys.2022.1047106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
The sea slug Melibe leonina is an excellent model system for the study of the neural basis of satiation, and previous studies have demonstrated that stomach distention attenuates feeding. Here we expanded on this work by examining the pathway communicating stomach distention to the central nervous system and the effects of distention on motor output. We found that the posterior nerves (PN), which extend posteriorly from the buccal ganglia and innervate the stomach, communicate stomach distention in Melibe. PN lesions led to increased feeding duration and food consumption, and PN activity increased in response to stomach distention. Additionally, the percentage of incomplete feeding movements increased with satiation, and PN stimulation had a similar impact in the nerves that innervate the oral hood. These incomplete movements may be functionally similar to the egestive, food rejecting motions seen in other gastropods and enable Melibe to remain responsive to food, yet adjust their behavior as they become satiated. Such flexibility would not be possible if the entire feeding network were inhibited.
Collapse
Affiliation(s)
- Colin Anthony Lee
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States,*Correspondence: Colin Anthony Lee,
| | - Winsor Hays Watson
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
7
|
Bédécarrats A, Puygrenier L, Castro O'Byrne J, Lade Q, Simmers J, Nargeot R. Organelle calcium-derived voltage oscillations in pacemaker neurons drive the motor program for food-seeking behavior in Aplysia. eLife 2021; 10:68651. [PMID: 34190043 PMCID: PMC8263059 DOI: 10.7554/elife.68651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
The expression of motivated behaviors depends on both external and internally arising neural stimuli, yet the intrinsic releasing mechanisms for such variably occurring behaviors remain elusive. In isolated nervous system preparations of Aplysia, we have found that irregularly expressed cycles of motor output underlying food-seeking behavior arise from regular membrane potential oscillations of varying magnitude in an identified pair of interneurons (B63) in the bilateral buccal ganglia. This rhythmic signal, which is specific to the B63 cells, is generated by organelle-derived intracellular calcium fluxes that activate voltage-independent plasma membrane channels. The resulting voltage oscillation spreads throughout a subset of gap junction-coupled buccal network neurons and by triggering plateau potential-mediated bursts in B63, can initiate motor output driving food-seeking action. Thus, an atypical neuronal pacemaker mechanism, based on rhythmic intracellular calcium store release and intercellular propagation, can act as an autonomous intrinsic releaser for the occurrence of a motivated behavior.
Collapse
Affiliation(s)
| | - Laura Puygrenier
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | | | - Quentin Lade
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | - John Simmers
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | - Romuald Nargeot
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Gill JP, Chiel HJ. Rapid Adaptation to Changing Mechanical Load by Ordered Recruitment of Identified Motor Neurons. eNeuro 2020; 7:ENEURO.0016-20.2020. [PMID: 32332081 PMCID: PMC7242813 DOI: 10.1523/eneuro.0016-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
As they interact with their environment and encounter challenges, animals adjust their behavior on a moment-to-moment basis to maintain task fitness. This dynamic process of adaptive motor control occurs in the nervous system, but an understanding of the biomechanics of the body is essential to properly interpret the behavioral outcomes. To study how animals respond to changing task conditions, we used a model system in which the functional roles of identified neurons and the relevant biomechanics are well understood and can be studied in intact behaving animals: feeding in the marine mollusc Aplysia We monitored the motor neuronal output of the feeding circuitry as intact animals fed on uniform food stimuli under unloaded and loaded conditions, and we measured the force of retraction during loaded swallows. We observed a previously undescribed pattern of force generation, which can be explained within the appropriate biomechanical context by the activity of just a few key, identified motor neurons. We show that, when encountering load, animals recruit identified retractor muscle motor neurons for longer and at higher frequency to increase retraction force duration. Our results identify a mode by which animals robustly adjust behavior to their environment, which is experimentally tractable to further mechanistic investigation.
Collapse
Affiliation(s)
- Jeffrey P Gill
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080
| | - Hillel J Chiel
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7080
| |
Collapse
|
9
|
Multiple Local Synaptic Modifications at Specific Sensorimotor Connections after Learning Are Associated with Behavioral Adaptations That Are Components of a Global Response Change. J Neurosci 2020; 40:4363-4371. [PMID: 32366723 DOI: 10.1523/jneurosci.2647-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/21/2022] Open
Abstract
Learning causes local changes in synaptic connectivity and coordinated, global changes affecting many aspects of behavior. How do local synaptic changes produce global behavioral changes? In the hermaphroditic mollusc Aplysia, after learning that food is inedible, memory is expressed as bias to reject a food and to reduce responses to that food. We now show that memory is also expressed as an increased bias to reject even a nonfood object. The increased bias to rejection is partially explained by changes in synaptic connections from primary mechanoafferents to five follower neurons with well defined roles in producing different feeding behaviors. Previously, these mechanoafferents had been shown to play a role in memory consolidation. Connectivity changes differed for each follower neuron: the probability that cells were connected changed; excitation changed to inhibition and vice versa; and connection amplitude changed. Thus, multiple neural changes at different sites underlie specific aspects of a coordinated behavioral change. Changes in the connectivity between mechanoafferents and their followers cannot account for all of the behavioral changes expressed after learning, indicating that additional synaptic sites are also changed. Access to the circuit controlling feeding can help determine the logic and cellular mechanisms by which multiple local synaptic changes produce an integrated, global change in behavior.SIGNIFICANCE STATEMENT How do local changes in synapses affect global behavior? Studies on invertebrate preparations usually examine synaptic changes at specific neural sites, producing a specific behavioral change. However, memory may be expressed by multiple behavioral changes. We report that a change in behavior after learning in Aplysia is accomplished, in part, by regulating connections between mechanoafferents and their synaptic followers. For some followers, the connection probabilities change; for others, the connection signs are reversed; in others, the connection strength is modified. Thus, learning produces changes in connectivity at multiple sites, via multiple synaptic mechanisms that are consistent with the observed behavioral change.
Collapse
|