1
|
Hall S. Is the Papez circuit the location of the elusive episodic memory engram? IBRO Neurosci Rep 2024; 16:249-259. [PMID: 38370006 PMCID: PMC10869290 DOI: 10.1016/j.ibneur.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
All of the brain structures and white matter that make up Papez' circuit, as well as the circuit as a whole, are implicated in the literature in episodic memory formation and recall. This paper shows that Papez' circuit has the detailed structure and connectivity that is evidently required to support the episodic memory engram, and that identifying Papez' circuit as the location of the engram answers a number of long-standing questions regarding the role of medial temporal lobe structures in episodic memory. The paper then shows that the process by which the episodic memory engram may be formed is a network-wide Hebbian potentiation termed "racetrack potentiation", whose frequency corresponds to that observed in vivo in humans for memory functions. Further, by considering the microcircuits observed in the medial temporal lobe structures forming Papez' circuit, the paper establishes the neural mechanisms behind the required functions of sensory information storage and recall, pattern completion, pattern separation, and memory consolidation. The paper shows that Papez' circuit has the necessary connectivity to gather the various elements of an episodic memory occurring within Pöppel's experienced time or "quantum of experience". Finally, the paper shows how the memory engram located in Papez' circuit might be central to the formation of a duplicate engram in the cortex enabling consolidation and long-term storage of episodic memories.
Collapse
Affiliation(s)
- Steven Hall
- Department of Psychology, University of Bolton, Deane Road, Bolton BL3 5AB, UK
| |
Collapse
|
2
|
Petekkaya E, Ünalmış Aykar D, Kaptan Z. An analysis of the relationship of "the Mozart effect" with BDNF levels in anatomy education. ANATOMICAL SCIENCES EDUCATION 2024; 17:770-778. [PMID: 38509019 DOI: 10.1002/ase.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
In 1993, an increase was observed in the spatial IQ scores of the volunteers who listened to Mozart's sonata K448 for 10 min, and this phenomenon entered the literature as the "Mozart effect." Other studies have shown that this effect is particularly evident in spatial skill tests. A large body of research has provided evidence that spatial ability is associated with success in learning anatomy. In this study, Kastamonu University Faculty of Medicine students were divided into two groups during 16-h practical training spanning 30 days. While one of the groups listened to Mozart's K448 sonata as the background music in all lessons, the control group attended the lessons in their standard form. At the end of each lesson, all students solved a modified mental rotation test including questions involving anatomical structures. Before starting the study, after the first laboratory class, on the 15th and 30th day of the study, blood samples were taken from the participants, and plasma brain-derived neurotrophic factor (BDNF) levels were determined. The effect of time on mental rotation score and plasma BDNF level was significant (p < 0.001 for both). The effect of group was also significant (p < 0.001 for both). Pairwise comparisons showed significance in the fifth, sixth, seventh, and eighth mental rotation test (p < 0.001, p = 0.041, p < 0.001, p < 0.001, respectively) and in the third (Day 15) and fourth (Day 30) BDNF measurement (p < 0.001 for both). Our findings may indicate that specific background music may be useful for anatomy teaching.
Collapse
Affiliation(s)
- Emine Petekkaya
- Department of Anatomy, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Demet Ünalmış Aykar
- Department of Anatomy, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Zülal Kaptan
- Department of Physiology, Faculty of Medicine, Istanbul Beykent University, Istanbul, Turkey
| |
Collapse
|
3
|
Eggl MF, Chater TE, Petkovic J, Goda Y, Tchumatchenko T. Linking spontaneous and stimulated spine dynamics. Commun Biol 2023; 6:930. [PMID: 37696988 PMCID: PMC10495434 DOI: 10.1038/s42003-023-05303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
Our brains continuously acquire and store memories through synaptic plasticity. However, spontaneous synaptic changes can also occur and pose a challenge for maintaining stable memories. Despite fluctuations in synapse size, recent studies have shown that key population-level synaptic properties remain stable over time. This raises the question of how local synaptic plasticity affects the global population-level synaptic size distribution and whether individual synapses undergoing plasticity escape the stable distribution to encode specific memories. To address this question, we (i) studied spontaneously evolving spines and (ii) induced synaptic potentiation at selected sites while observing the spine distribution pre- and post-stimulation. We designed a stochastic model to describe how the current size of a synapse affects its future size under baseline and stimulation conditions and how these local effects give rise to population-level synaptic shifts. Our study offers insights into how seemingly spontaneous synaptic fluctuations and local plasticity both contribute to population-level synaptic dynamics.
Collapse
Affiliation(s)
- Maximilian F Eggl
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany
| | - Thomas E Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Janko Petkovic
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Synapse Biology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Tatjana Tchumatchenko
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany.
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
4
|
Colgan LA, Parra-Bueno P, Holman HL, Tu X, Jain A, Calubag MF, Misler JA, Gary C, Oz G, Suponitsky-Kroyter I, Okaz E, Yasuda R. Dual Regulation of Spine-Specific and Synapse-to-Nucleus Signaling by PKCδ during Plasticity. J Neurosci 2023; 43:5432-5447. [PMID: 37277178 PMCID: PMC10376934 DOI: 10.1523/jneurosci.0208-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023] Open
Abstract
The activity-dependent plasticity of synapses is believed to be the cellular basis of learning. These synaptic changes are mediated through the coordination of local biochemical reactions in synapses and changes in gene transcription in the nucleus to modulate neuronal circuits and behavior. The protein kinase C (PKC) family of isozymes has long been established as critical for synaptic plasticity. However, because of a lack of suitable isozyme-specific tools, the role of the novel subfamily of PKC isozymes is largely unknown. Here, through the development of fluorescence lifetime imaging-fluorescence resonance energy transfer activity sensors, we investigate novel PKC isozymes in synaptic plasticity in CA1 pyramidal neurons of mice of either sex. We find that PKCδ is activated downstream of TrkB and DAG production, and that the spatiotemporal nature of its activation depends on the plasticity stimulation. In response to single-spine plasticity, PKCδ is activated primarily in the stimulated spine and is required for local expression of plasticity. However, in response to multispine stimulation, a long-lasting and spreading activation of PKCδ scales with the number of spines stimulated and, by regulating cAMP response-element binding protein activity, couples spine plasticity to transcription in the nucleus. Thus, PKCδ plays a dual functional role in facilitating synaptic plasticity.SIGNIFICANCE STATEMENT Synaptic plasticity, or the ability to change the strength of the connections between neurons, underlies learning and memory and is critical for brain health. The protein kinase C (PKC) family is central to this process. However, understanding how these kinases work to mediate plasticity has been limited by a lack of tools to visualize and perturb their activity. Here, we introduce and use new tools to reveal a dual role for PKCδ in facilitating local synaptic plasticity and stabilizing this plasticity through spine-to-nucleus signaling to regulate transcription. This work provides new tools to overcome limitations in studying isozyme-specific PKC function and provides insight into molecular mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Lesley A Colgan
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Paula Parra-Bueno
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Heather L Holman
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Xun Tu
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Anant Jain
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Mariah F Calubag
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Jaime A Misler
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Chancellor Gary
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Goksu Oz
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Irena Suponitsky-Kroyter
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Elwy Okaz
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Ryohei Yasuda
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| |
Collapse
|
5
|
Solntseva SV, Nikitin VP, Kozyrev SA, Nikitin PV. DNA methylation inhibition participates in the anterograde amnesia key mechanism through the suppression of the transcription of genes involved in memory formation in grape snails. Behav Brain Res 2023; 437:114118. [PMID: 36116736 DOI: 10.1016/j.bbr.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The study of the amnesia mechanisms is of both theoretical and practical importance. The mechanisms of anterograde amnesia are the least studied, due to the lack of an experimental model that allows studying this amnesia type molecular and cellular mechanisms. Previously, we found that conditional food aversion memory reconsolidation impairment in snails by NMDA glutamate receptor antagonists led to the amnesia induction, in the late stages of which (>10 days) repeated training did not cause long-term memory formation. In the same animals, long-term memory aversion to a new food type was formed. We characterized this amnesia as specific anterograde amnesia. In the present work we studied the role of epigenetic DNA methylation processes as well as protein and mRNA synthesis in the mechanisms of anterograde amnesia and memory recovery. DNMT methyltransferase inhibitors (iDNMT: zebularine, RG108 (N-Phthalyl-1-tryptophan), and 5-AZA (5-Aza-2'-deoxycytidine)) were used to alter DNA methylation. It was found that in amnesic animals the iDNMT administration before or after shortened repeated training led to the rapid long-term conditional food aversion formation (Ebbinghaus saving effect). This result suggests that amnestic animals retain a latent memory, which is the basis for accelerated memory formation during repeated training. Protein synthesis inhibitors administration (cycloheximide) before or immediately after repeated training or administration of RNA synthesis inhibitor (actinomycin D) after repeated training prevented memory formation under iDNMT action. The earlier protein synthesis inhibitor effect suggests that the proteins required for memory formation are translated from the pre-existing, translationally repressed mRNAs. Thus, we have shown for the first time that the anterograde amnesia key mechanism is DNMT-dependent suppression of the transcription of genes involved in memory mechanisms. Inhibition of DNMT during repeated training reversed these genes expression blockade, opening access to them by transcription factors synthesized during training from the pre-existing mRNAs.
Collapse
Affiliation(s)
- S V Solntseva
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - V P Nikitin
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - S A Kozyrev
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - P V Nikitin
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| |
Collapse
|
6
|
Hagena H, Stacho M, Laja A, Manahan-Vaughan D. Strain-dependent regulation of hippocampal long-term potentiation by dopamine D1/D5 receptors in mice. Front Behav Neurosci 2022; 16:1023361. [PMID: 36545120 PMCID: PMC9760685 DOI: 10.3389/fnbeh.2022.1023361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
The magnitude and persistency of long-term potentiation (LTP) in the rodent hippocampus is species-dependent: rats express more robust and more prolonged LTP in response to a broader afferent frequency range than mice. The C57Bl/6 mouse is an extremely popular murine strain used in studies of hippocampal synaptic plasticity and spatial learning. Recently it was reported that it expresses impoverished LTP compared to other murine strains. Given the important role of the dopamine D1/D5 receptor (D1/D5R) in the maintenance of LTP and in memory consolidation, we explored to what extent strain-dependent differences in LTP in mice are determined by differences in D1/D5R-control. In CaOlaHsd mice, robust LTP was induced that lasted for over 24 h and which was significantly greater in magnitude than LTP induced in C57Bl/6 mice. Intracerebral treatment with a D1/D5R-antagonist (SCH23390) prevented both the early and late phase of LTP in CaOlaHsd mice, whereas only late-LTP was impaired in C57Bl/6 mice. Treatment with a D1/D5R-agonist (Chloro-PB) facilitated short-term potentiation (STP) into LTP (> 24 h) in both strains, whereby effects became evident earlier in CaOlaHsd compared to C57Bl/6 mice. Immunohistochemical analysis revealed a significantly higher expression of D1-receptors in the stratum lacunosum moleculare of CaOlaHsd compared to C57Bl/6 mice. These findings highlight differences in D1/D5R- dependent regulation of strain-dependent variations in hippocampal LTP in C57Bl/6 and CaOlaHsd mice, that may be mediated, in part, by differences in the expression of D1R in the hippocampus.
Collapse
|
7
|
Lehr AB, Luboeinski J, Tetzlaff C. Neuromodulator-dependent synaptic tagging and capture retroactively controls neural coding in spiking neural networks. Sci Rep 2022; 12:17772. [PMID: 36273097 PMCID: PMC9588040 DOI: 10.1038/s41598-022-22430-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 01/19/2023] Open
Abstract
Events that are important to an individual's life trigger neuromodulator release in brain areas responsible for cognitive and behavioral function. While it is well known that the presence of neuromodulators such as dopamine and norepinephrine is required for memory consolidation, the impact of neuromodulator concentration is, however, less understood. In a recurrent spiking neural network model featuring neuromodulator-dependent synaptic tagging and capture, we study how synaptic memory consolidation depends on the amount of neuromodulator present in the minutes to hours after learning. We find that the storage of rate-based and spike timing-based information is controlled by the level of neuromodulation. Specifically, we find better recall of temporal information for high levels of neuromodulation, while we find better recall of rate-coded spatial patterns for lower neuromodulation, mediated by the selection of different groups of synapses for consolidation. Hence, our results indicate that in minutes to hours after learning, the level of neuromodulation may alter the process of synaptic consolidation to ultimately control which type of information becomes consolidated in the recurrent neural network.
Collapse
Affiliation(s)
- Andrew B. Lehr
- grid.7450.60000 0001 2364 4210Department of Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| | - Jannik Luboeinski
- grid.7450.60000 0001 2364 4210Department of Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- grid.7450.60000 0001 2364 4210Department of Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Amano R, Nakao M, Matsumiya K, Miwakeichi F. A computational model to explore how temporal stimulation patterns affect synapse plasticity. PLoS One 2022; 17:e0275059. [PMID: 36149886 PMCID: PMC9506666 DOI: 10.1371/journal.pone.0275059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Plasticity-related proteins (PRPs), which are synthesized in a synapse activation-dependent manner, are shared by multiple synapses to a limited spatial extent for a specific period. In addition, stimulated synapses can utilize shared PRPs through synaptic tagging and capture (STC). In particular, the phenomenon by which short-lived early long-term potentiation is transformed into long-lived late long-term potentiation using shared PRPs is called “late-associativity,” which is the underlying principle of “cluster plasticity.” We hypothesized that the competitive capture of PRPs by multiple synapses modulates late-associativity and affects the fate of each synapse in terms of whether it is integrated into a synapse cluster. We tested our hypothesis by developing a computational model to simulate STC, late-associativity, and the competitive capture of PRPs. The experimental results obtained using the model revealed that the number of competing synapses, timing of stimulation to each synapse, and basal PRP level in the dendritic compartment altered the effective temporal window of STC and influenced the conditions under which late-associativity occurs. Furthermore, it is suggested that the competitive capture of PRPs results in the selection of synapses to be integrated into a synapse cluster via late-associativity.
Collapse
Affiliation(s)
- Ryota Amano
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- * E-mail:
| | - Mitsuyuki Nakao
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | | | - Fumikazu Miwakeichi
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Department of Statistical Modeling, The Institute of Statistical Mathematics, Tachikawa-Shi, Japan
| |
Collapse
|
9
|
High Fat Diet Multigenerationally Affects Hippocampal Neural Stem Cell Proliferation via Epigenetic Mechanisms. Cells 2022; 11:cells11172661. [PMID: 36078069 PMCID: PMC9454549 DOI: 10.3390/cells11172661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Early-life metabolic stress has been demonstrated to affect brain development, persistently influence brain plasticity and to exert multigenerational effects on cognitive functions. However, the impact of an ancestor’s diet on the adult neurogenesis of their descendants has not yet been investigated. Here, we studied the effects of maternal high fat diet (HFD) on hippocampal adult neurogenesis and the proliferation of neural stem and progenitor cells (NSPCs) derived from the hippocampus of both the second and the third generations of progeny (F2HFD and F3HFD). Maternal HFD caused a multigenerational depletion of neurogenic niche in F2HFD and F3HFD mice. Moreover, NSPCs derived from HFD descendants showed altered expression of genes regulating stem cell proliferation and neurodifferentiation (i.e., Hes1, NeuroD1, Bdnf). Finally, ancestor HFD-related hyper-activation of both STAT3 and STAT5 induced enhancement of their binding on the regulatory sequences of Gfap gene and an epigenetic switch from permissive to repressive chromatin on the promoter of the NeuroD1 gene. Collectively, our data indicate that maternal HFD multigenerationally affects hippocampal adult neurogenesis via an epigenetic derangement of pro-neurogenic gene expression in NSPCs.
Collapse
|
10
|
Zhang Y, Smolen P, Alberini CM, Baxter DA, Byrne JH. Computational analysis of memory consolidation following inhibitory avoidance (IA) training in adult and infant rats: Critical roles of CaMKIIα and MeCP2. PLoS Comput Biol 2022; 18:e1010239. [PMID: 35759520 PMCID: PMC9269953 DOI: 10.1371/journal.pcbi.1010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/08/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Key features of long-term memory (LTM), such as its stability and persistence, are acquired during processes collectively referred to as consolidation. The dynamics of biological changes during consolidation are complex. In adult rodents, consolidation exhibits distinct periods during which the engram is more or less resistant to disruption. Moreover, the ability to consolidate memories differs during developmental periods. Although the molecular mechanisms underlying consolidation are poorly understood, the initial stages rely on interacting signaling pathways that regulate gene expression, including brain-derived neurotrophic factor (BDNF) and Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) dependent feedback loops. We investigated the ways in which these pathways may contribute to developmental and dynamical features of consolidation. A computational model of molecular processes underlying consolidation following inhibitory avoidance (IA) training in rats was developed. Differential equations described the actions of CaMKIIα, multiple feedback loops regulating BDNF expression, and several transcription factors including methyl-CpG binding protein 2 (MeCP2), histone deacetylase 2 (HDAC2), and SIN3 transcription regulator family member A (Sin3a). This model provides novel explanations for the (apparent) rapid forgetting of infantile memory and the temporal progression of memory consolidation in adults. Simulations predict that dual effects of MeCP2 on the expression of bdnf, and interaction between MeCP2 and CaMKIIα, play critical roles in the rapid forgetting of infantile memory and the progress of memory resistance to disruptions. These insights suggest new potential targets of therapy for memory impairment.
Collapse
Affiliation(s)
- Yili Zhang
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Paul Smolen
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Cristina M. Alberini
- Center for Neural Science, New York University, New York City, New York, United States of America
| | - Douglas A. Baxter
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Neurobiology and Experimental Therapeutics, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - John H. Byrne
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|
11
|
Lewis V, Laberge F, Heyland A. Transcriptomic signature of extinction learning in the brain of the fire-bellied toad, Bombina orientalis. Neurobiol Learn Mem 2021; 184:107502. [PMID: 34391934 DOI: 10.1016/j.nlm.2021.107502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
Insight into the molecular and cellular mechanisms of learning and memory from a diverse array of taxa contributes to our understanding of the evolution of these processes. The fire-bellied toad, Bombina orientalis, is a basal anuran amphibian model species who could help us describe shared and divergent characteristics of learning and memory mechanisms between amphibians and other vertebrates, and hence answer questions about the evolution of learning. Utilizing next generation sequencing techniques, we profiled gene expression patterns associated with the extinction of prey-catching conditioning in the brain of the fire-bellied toad. For this purpose, gene expression was at first compared between toads sacrificed after acquisition and extinction of the conditioned response. A second comparison was done between toads submitted to extinction following either short or long acquisition training, which results in toads displaying response extinction or resistance to extinction, respectively. We analyzed brain tissue transcription profiles common to both acquisition and extinction learning, or unique to extinction learning and resistance to extinction, and found significant overlap in gene expression related to molecular pathways involving neuronal plasticity (e.g. structural modification, transcription). However, extinction learning induced a unique GABAergic transcriptomic signal, which may be responsible for suppression of the original response memory. Further, when comparing extinction learning in short- and long-trained groups, short training engaged many pathways related to neuronal plasticity, as expected, but long training engaged molecular pathways related to the suppression of learning through epigenetic mediated transcriptional suppression and inhibitory neurotransmission. Overall, gene expression patterns associated with extinction learning in the fire-bellied toad were similar to those found in mammals submitted to extinction, although some divergent profiles highlighted potential differences in the mechanisms of learning and memory among tetrapods.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
12
|
Quantitative description of the interactions among kinase cascades underlying long-term plasticity of Aplysia sensory neurons. Sci Rep 2021; 11:14931. [PMID: 34294802 PMCID: PMC8298407 DOI: 10.1038/s41598-021-94393-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
Kinases play critical roles in synaptic and neuronal changes involved in the formation of memory. However, significant gaps exist in the understanding of how interactions among kinase pathways contribute to the mechanistically distinct temporal domains of memory ranging from short-term memory to long-term memory (LTM). Activation of protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)-ribosomal S6 kinase (RSK) pathways are critical for long-term enhancement of neuronal excitability (LTEE) and long-term synaptic facilitation (LTF), essential processes in memory formation. This study provides new insights into how these pathways contribute to the temporal domains of memory, using empirical and computational approaches. Empirical studies of Aplysia sensory neurons identified a positive feedforward loop in which the PKA and ERK pathways converge to regulate RSK, and a negative feedback loop in which p38 MAPK inhibits the activation of ERK and RSK. A computational model incorporated these findings to simulate the dynamics of kinase activity produced by different stimulus protocols and predict the critical roles of kinase interactions in the dynamics of these pathways. These findings may provide insights into the mechanisms underlying aberrant synaptic plasticity observed in genetic disorders such as RASopathies and Coffin-Lowry syndrome.
Collapse
|
13
|
Jin I, Kassabov S, Kandel ER, Hawkins RD. Possible novel features of synaptic regulation during long-term facilitation in Aplysia. ACTA ACUST UNITED AC 2021; 28:218-227. [PMID: 34131053 PMCID: PMC8212780 DOI: 10.1101/lm.053124.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/23/2021] [Indexed: 11/24/2022]
Abstract
Most studies of molecular mechanisms of synaptic plasticity have focused on the sequence of changes either at individual synapses or in the cell nucleus. However, studies of long-term facilitation at Aplysia sensory neuron–motor neuron synapses in isolated cell culture suggest two additional features of facilitation. First, that there is also regulation of the number of synaptic contacts between two neurons, which may occur at the level of cell pair-specific branch points in the neuronal arbor. Branch points contain many molecules that are involved in protein synthesis-dependent long-term facilitation including neurotrophins and the RNA binding protein CPEB. Second, the regulation involves homeostatic feedback and tends to keep the total number of contacts between two neurons at a fairly constant level both at rest and following facilitation. That raises the question of how facilitation and homeostasis can coexist. A possible answer is suggested by the findings that they both involve spontaneous transmission and postsynaptic Ca2+, which can have bidirectional effects similar to LTP and LTD in hippocampus. In addition, long-term facilitation can involve a change in the set point of homeostasis, which could be encoded by plasticity molecules such as CPEB and/or PKM. A computational model based on these ideas can qualitatively simulate the basic features of both facilitation and homeostasis of the number of contacts.
Collapse
Affiliation(s)
- Iksung Jin
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Stefan Kassabov
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, New York 10032, USA.,New York State Psychiatric Institute, New York, New York 10032, USA.,Howard Hughes Medical Institute, New York, New York 10032, USA
| | - Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032, USA.,New York State Psychiatric Institute, New York, New York 10032, USA
| |
Collapse
|
14
|
Rao-Ruiz P, Visser E, Mitrić M, Smit AB, van den Oever MC. A Synaptic Framework for the Persistence of Memory Engrams. Front Synaptic Neurosci 2021; 13:661476. [PMID: 33841124 PMCID: PMC8024575 DOI: 10.3389/fnsyn.2021.661476] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022] Open
Abstract
The ability to store and retrieve learned information over prolonged periods of time is an essential and intriguing property of the brain. Insight into the neurobiological mechanisms that underlie memory consolidation is of utmost importance for our understanding of memory persistence and how this is affected in memory disorders. Recent evidence indicates that a given memory is encoded by sparsely distributed neurons that become highly activated during learning, so-called engram cells. Research by us and others confirms the persistent nature of cortical engram cells by showing that these neurons are required for memory expression up to at least 1 month after they were activated during learning. Strengthened synaptic connectivity between engram cells is thought to ensure reactivation of the engram cell network during retrieval. However, given the continuous integration of new information into existing neuronal circuits and the relatively rapid turnover rate of synaptic proteins, it is unclear whether a lasting learning-induced increase in synaptic connectivity is mediated by stable synapses or by continuous dynamic turnover of synapses of the engram cell network. Here, we first discuss evidence for the persistence of engram cells and memory-relevant adaptations in synaptic plasticity, and then propose models of synaptic adaptations and molecular mechanisms that may support memory persistence through the maintenance of enhanced synaptic connectivity within an engram cell network.
Collapse
Affiliation(s)
- Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther Visser
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miodrag Mitrić
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Nikitin VP, Kozyrev SA, Solntseva SV, Nikitin PV. Protein synthesis inhibitor administration before a reminder caused recovery from amnesia induced by memory reconsolidation impairment with NMDA glutamate receptor antagonist. Brain Res Bull 2021; 171:44-55. [PMID: 33722648 DOI: 10.1016/j.brainresbull.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 11/15/2022]
Abstract
Memory recovery in amnestic animals is one of the most poorly studied processes. In this paper, we examine the role of protein synthesis and a reminder in the mechanisms of amnesia and memory recovery in grape snails trained to conditioned food aversion. Amnesia was induced by the impairment of memory reconsolidation using NMDA (N-methyl d-aspartate) glutamate receptor antagonists. In an early stage of amnesia (day 3), injections of protein synthesis inhibitors into animals combined with a reminder by a conditioned stimulus (CS) led to the recovery of aversive reactions to its presentation. Two types of changes in reactions to CS were revealed. In most animals, a persistent recovery of memory retrieval was found that lasted for at least 10 days. In other snails, aversive responses to CS persisted for 24 h. Isolated injections of inhibitors, injections of inhibitors and a reminder by the learning environment (without presenting a CS), usage of a differentiating stimulus instead of a CS, or inhibitor injections after the reminder did not affect the development of amnesia. The administration of protein synthesis inhibitors and a reminder in the late period after amnesia induction (10 days) did not affect its development or caused a short-term memory recovery. We suggest that amnesia is an active process that develops over time. The reminder induces the reactivation of the amnesia process dependent on protein synthesis, while the administration of protein synthesis inhibitors leads to the impairment of amnesia reactivation and recovery of the state formed before amnesia induction (i.e., recovery of conditioned food aversion memory).
Collapse
Affiliation(s)
- V P Nikitin
- P.K. Anokhin Institute of Normal Physiology, 125315, Baltiyskaya Street, 8, Moscow, Russia.
| | - S A Kozyrev
- P.K. Anokhin Institute of Normal Physiology, 125315, Baltiyskaya Street, 8, Moscow, Russia.
| | - S V Solntseva
- P.K. Anokhin Institute of Normal Physiology, 125315, Baltiyskaya Street, 8, Moscow, Russia.
| | - P V Nikitin
- P.K. Anokhin Institute of Normal Physiology, 125315, Baltiyskaya Street, 8, Moscow, Russia.
| |
Collapse
|
16
|
Peretti D, Smith HL, Verity N, Humoud I, de Weerd L, Swinden DP, Hayes J, Mallucci GR. TrkB signaling regulates the cold-shock protein RBM3-mediated neuroprotection. Life Sci Alliance 2021; 4:4/4/e202000884. [PMID: 33563652 PMCID: PMC7893816 DOI: 10.26508/lsa.202000884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023] Open
Abstract
Increasing levels of the cold-shock protein, RNA-binding motif 3 (RBM3), either through cooling or by ectopic over-expression, prevents synapse and neuronal loss in mouse models of neurodegeneration. To exploit this process therapeutically requires an understanding of mechanisms controlling cold-induced RBM3 expression. Here, we show that cooling increases RBM3 through activation of TrkB via PLCγ1 and pCREB signaling. RBM3, in turn, has a hitherto unrecognized negative feedback on TrkB-induced ERK activation through induction of its specific phosphatase, DUSP6. Thus, RBM3 mediates structural plasticity through a distinct, non-canonical activation of TrkB signaling, which is abolished in RBM3-null neurons. Both genetic reduction and pharmacological antagonism of TrkB and its downstream mediators abrogate cooling-induced RBM3 induction and prevent structural plasticity, whereas TrkB inhibition similarly prevents RBM3 induction and the neuroprotective effects of cooling in prion-diseased mice. Conversely, TrkB agonism induces RBM3 without cooling, preventing synapse loss and neurodegeneration. TrkB signaling is, therefore, necessary for the induction of RBM3 and related neuroprotective effects and provides a target by which RBM3-mediated synapse-regenerative therapies in neurodegenerative disorders can be used therapeutically without the need for inducing hypothermia.
Collapse
Affiliation(s)
- Diego Peretti
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Heather L Smith
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicholas Verity
- MRC Toxicology Unit at the University of Cambridge, Leicester, UK
| | - Ibrahim Humoud
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Lis de Weerd
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Dean P Swinden
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Joseph Hayes
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Giovanna R Mallucci
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
17
|
Energetics of stochastic BCM type synaptic plasticity and storing of accurate information. J Comput Neurosci 2021; 49:71-106. [PMID: 33528721 PMCID: PMC8046702 DOI: 10.1007/s10827-020-00775-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/04/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022]
Abstract
Excitatory synaptic signaling in cortical circuits is thought to be metabolically expensive. Two fundamental brain functions, learning and memory, are associated with long-term synaptic plasticity, but we know very little about energetics of these slow biophysical processes. This study investigates the energy requirement of information storing in plastic synapses for an extended version of BCM plasticity with a decay term, stochastic noise, and nonlinear dependence of neuron’s firing rate on synaptic current (adaptation). It is shown that synaptic weights in this model exhibit bistability. In order to analyze the system analytically, it is reduced to a simple dynamic mean-field for a population averaged plastic synaptic current. Next, using the concepts of nonequilibrium thermodynamics, we derive the energy rate (entropy production rate) for plastic synapses and a corresponding Fisher information for coding presynaptic input. That energy, which is of chemical origin, is primarily used for battling fluctuations in the synaptic weights and presynaptic firing rates, and it increases steeply with synaptic weights, and more uniformly though nonlinearly with presynaptic firing. At the onset of synaptic bistability, Fisher information and memory lifetime both increase sharply, by a few orders of magnitude, but the plasticity energy rate changes only mildly. This implies that a huge gain in the precision of stored information does not have to cost large amounts of metabolic energy, which suggests that synaptic information is not directly limited by energy consumption. Interestingly, for very weak synaptic noise, such a limit on synaptic coding accuracy is imposed instead by a derivative of the plasticity energy rate with respect to the mean presynaptic firing, and this relationship has a general character that is independent of the plasticity type. An estimate for primate neocortex reveals that a relative metabolic cost of BCM type synaptic plasticity, as a fraction of neuronal cost related to fast synaptic transmission and spiking, can vary from negligible to substantial, depending on the synaptic noise level and presynaptic firing.
Collapse
|
18
|
Smolen P, Baxter DA, Byrne JH. Comparing Theories for the Maintenance of Late LTP and Long-Term Memory: Computational Analysis of the Roles of Kinase Feedback Pathways and Synaptic Reactivation. Front Comput Neurosci 2020; 14:569349. [PMID: 33390922 PMCID: PMC7772319 DOI: 10.3389/fncom.2020.569349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022] Open
Abstract
A fundamental neuroscience question is how memories are maintained from days to a lifetime, given turnover of proteins that underlie expression of long-term synaptic potentiation (LTP) or “tag” synapses as eligible for LTP. A likely solution relies on synaptic positive feedback loops, prominently including persistent activation of Ca2+/calmodulin kinase II (CaMKII) and self-activated synthesis of protein kinase M ζ (PKMζ). Data also suggest positive feedback based on recurrent synaptic reactivation within neuron assemblies, or engrams, is necessary to maintain memories. The relative importance of these mechanisms is controversial. To explore the likelihood that each mechanism is necessary or sufficient to maintain memory, we simulated maintenance of LTP with a simplified model incorporating persistent kinase activation, synaptic tagging, and preferential reactivation of strong synapses, and analyzed implications of recent data. We simulated three model variants, each maintaining LTP with one feedback loop: autonomous, self-activated PKMζ synthesis (model variant I); self-activated CamKII (model variant II); and recurrent reactivation of strengthened synapses (model variant III). Variant I predicts that, for successful maintenance of LTP, either 1) PKMζ contributes to synaptic tagging, or 2) a low constitutive tag level persists during maintenance independent of PKMζ, or 3) maintenance of LTP is independent of tagging. Variant II maintains LTP and suggests persistent CaMKII activation could maintain PKMζ activity, a feedforward interaction not previously considered. However, we note data challenging the CaMKII feedback loop. In Variant III synaptic reactivation drives, and thus predicts, recurrent or persistent activation of CamKII and other necessary kinases, plausibly contributing to persistent elevation of PKMζ levels. Reactivation is thus predicted to sustain recurrent rounds of synaptic tagging and incorporation of plasticity-related proteins. We also suggest (model variant IV) that synaptic reactivation and autonomous kinase activation could synergistically maintain LTP. We propose experiments that could discriminate these maintenance mechanisms.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States.,Engineering and Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
19
|
Iron-responsive-like elements and neurodegenerative ferroptosis. ACTA ACUST UNITED AC 2020; 27:395-413. [PMID: 32817306 PMCID: PMC7433652 DOI: 10.1101/lm.052282.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
Abstract
A set of common-acting iron-responsive 5′untranslated region (5′UTR) motifs can fold into RNA stem loops that appear significant to the biology of cognitive declines of Parkinson's disease dementia (PDD), Lewy body dementia (LDD), and Alzheimer's disease (AD). Neurodegenerative diseases exhibit perturbations of iron homeostasis in defined brain subregions over characteristic time intervals of progression. While misfolding of Aβ from the amyloid-precursor-protein (APP), alpha-synuclein, prion protein (PrP) each cause neuropathic protein inclusions in the brain subregions, iron-responsive-like element (IRE-like) RNA stem–loops reside in their transcripts. APP and αsyn have a role in iron transport while gene duplications elevate the expression of their products to cause rare familial cases of AD and PDD. Of note, IRE-like sequences are responsive to excesses of brain iron in a potential feedback loop to accelerate neuronal ferroptosis and cognitive declines as well as amyloidosis. This pathogenic feedback is consistent with the translational control of the iron storage protein ferritin. We discuss how the IRE-like RNA motifs in the 5′UTRs of APP, alpha-synuclein and PrP mRNAs represent uniquely folded drug targets for therapies to prevent perturbed iron homeostasis that accelerates AD, PD, PD dementia (PDD) and Lewy body dementia, thus preventing cognitive deficits. Inhibition of alpha-synuclein translation is an option to block manganese toxicity associated with early childhood cognitive problems and manganism while Pb toxicity is epigenetically associated with attention deficit and later-stage AD. Pathologies of heavy metal toxicity centered on an embargo of iron export may be treated with activators of APP and ferritin and inhibitors of alpha-synuclein translation.
Collapse
|
20
|
Rhein C, Mühle C, Lenz B, Richter-Schmidinger T, Kogias G, Boix F, Lourdusamy A, Dörfler A, Peters O, Ramirez A, Jessen F, Maier W, Hüll M, Frölich L, Teipel S, Wiltfang J, Kornhuber J, Müller CP. Association of a CAMK2A genetic variant with logical memory performance and hippocampal volume in the elderly. Brain Res Bull 2020; 161:13-20. [PMID: 32418901 DOI: 10.1016/j.brainresbull.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/31/2020] [Accepted: 05/03/2020] [Indexed: 12/14/2022]
Abstract
Calcium/Calmodulin-dependent kinase alpha (αCaMKII) has been shown to play an essential role in synaptic plasticity and in learning and memory in animal models. However, there is little evidence for an involvement in specific memories in humans. Here we tested the potential involvement of the αCaMKII coding gene CAMK2A in verbal logical memory in two Caucasian populations from Germany, in a sample of 209 elderly people with cognitive impairments and a sample of 142 healthy adults. The association of single nucleotide polymorphisms (SNPs) located within the genomic region of CAMK2A with verbal logical memory learning and retrieval from the Wechsler Memory Scale was measured and hippocampal volume was assessed by structural MRI. In the elderly people, we found the minor allele of CAMK2A intronic SNP rs919741 to predict a higher hippocampal volume and better logical memory retrieval. This association was not found in healthy adults. The present study may provide evidence for an association of a genetic variant of the CAMK2A gene specifically with retrieval of logical memory in elderly humans. This effect is possibly mediated by a higher hippocampal volume.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany; Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Anbarasu Lourdusamy
- Division of Child Health, Obstetrics and Gynecology, School of Medicine, University of Nottingham, NG7 2UH, UK
| | - Arnd Dörfler
- Department of Neuroradiology, University Clinic, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver Peters
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Eschenallee 3, DE-14050 Berlin, Germany
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany; Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Michael Hüll
- Emmendingen Center for Psychiatry, Clinic for Geriatric Psychiatry and Psychotherapy and University of Freiburg, Freiburg, Germany
| | - Lutz Frölich
- Central Institute of Mental Health, Mannheim, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, 18147 Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen 37075, Germany; German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany; Neurosciences and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
21
|
Mizuno K, Jeffries AR, Abel T, Giese KP. Long-lasting transcription in hippocampal area CA1 after contextual fear conditioning. Neurobiol Learn Mem 2020; 172:107250. [PMID: 32422278 DOI: 10.1016/j.nlm.2020.107250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 01/25/2023]
Abstract
A fundamental question is how memory is stored for several weeks and even longer. A long-lasting increase in gene transcription has been suggested to mediate such long-term memory storage. Here, we used contextual fear conditioning in mice to search for lasting transcription that may contribute to long-term memory storage. Our study focussed on hippocampal area CA1, which has been suggested to have a role for at least one week in contextual fear memory. Using an unbiased microarray analysis followed by confirmatory quantitative real-time PCR, we identified an upregulation of two transcription factors, Fosl2 and Nfil3, which lasted for seven days after conditioning. To our knowledge these are the longest transcriptional changes ever detected in the hippocampus after contextual fear conditioning. Thus, our findings suggest novel transcriptional candidates for long-term memory storage.
Collapse
Affiliation(s)
- Keiko Mizuno
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, UK.
| | - Aaron R Jeffries
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Ted Abel
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K Peter Giese
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, UK.
| |
Collapse
|
22
|
Alexandrescu A, Carew TJ. Postsynaptic effects of Aplysia cysteine-rich neurotrophic factor in the induction of activity-dependent long-term facilitation in Aplysia californica. ACTA ACUST UNITED AC 2020; 27:124-129. [PMID: 32179654 PMCID: PMC7079570 DOI: 10.1101/lm.051011.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
Abstract
The spatial and temporal coordination of growth factor signaling is critical for both presynaptic and postsynaptic plasticity underlying long-term memory formation. We investigated the spatiotemporal dynamics of Aplysia cysteine-rich neurotrophic factor (ApCRNF) signaling during the induction of activity-dependent long-term facilitation (AD-LTF) at sensory-to-motor neuron synapses that mediate defensive reflexes in Aplysia We found that ApCRNF signaling is required for the induction of AD-LTF, and for training-induced early protein kinase activation and late forms of gene expression, exclusively in postsynaptic neurons. These results support the view that ApCRNF is critically involved in AD-LTF at least in part through postsynaptic mechanisms.
Collapse
Affiliation(s)
- Anamaria Alexandrescu
- Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Thomas J Carew
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
23
|
Nikitin V, Solntseva S, Kozyrev S, Nikitin P. Long-term memory consolidation or reconsolidation impairment induces amnesia with key characteristics that are similar to key learning characteristics. Neurosci Biobehav Rev 2020; 108:542-558. [DOI: 10.1016/j.neubiorev.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
|
24
|
Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation. J Neurosci 2019; 39:9369-9382. [PMID: 31597726 DOI: 10.1523/jneurosci.0752-19.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Conditioned taste aversion (CTA) is an associative learning paradigm, wherein consumption of an appetitive tastant (e.g., saccharin) is paired to the administration of a malaise-inducing agent, such as intraperitoneal injection of LiCl. Aversive taste learning and retrieval require neuronal activity within the anterior insula (aIC) and the basolateral amygdala (BLA). Here, we labeled neurons of the aIC projecting to the BLA in adult male mice using a retro-AAV construct and assessed their necessity in aversive and appetitive taste learning. By restricting the expression of chemogenetic receptors in aIC-to-BLA neurons, we demonstrate that activity within the aIC-to-BLA projection is necessary for both aversive taste memory acquisition and retrieval, but not for its maintenance, nor its extinction. Moreover, inhibition of the projection did not affect incidental taste learning per se, but effectively suppressed aversive taste memory retrieval when applied either during or before the encoding of the unconditioned stimulus for CTA (i.e., malaise). Remarkably, activation of the projection after novel taste consumption, without experiencing any internal discomfort, was sufficient to form an artificial aversive taste memory, resulting in strong aversive behavior upon retrieval. Our results indicate that aIC-to-BLA projecting neurons are an essential component in the ability of the brain to associate taste sensory stimuli with body states of negative valence and guide the expression of valence-specific behavior upon taste memory retrieval.SIGNIFICANCE STATEMENT In the present study we subjected mice to the conditioned taste aversion paradigm, where animals learn to associate novel taste with malaise (i.e., assign it negative valence). We show that activation of neurons in the anterior insular cortex (aIC) that project into the basolateral amygdala (BLA) in response to conditioned taste aversion is necessary to form a memory for a taste of negative valence. Moreover, artificial activation of this pathway (without any feeling of pain) after the sampling of a taste can also lead to such associative memory. Thus, activation of aIC-to-BLA projecting neurons is necessary and sufficient to form and retrieve aversive taste memory.
Collapse
|
25
|
Hegde AN, Smith SG. Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory. ACTA ACUST UNITED AC 2019; 26:307-317. [PMID: 31416904 PMCID: PMC6699410 DOI: 10.1101/lm.048769.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Formation of long-term synaptic plasticity that underlies long-term memory requires new protein synthesis. Years of research has elucidated some of the transcriptional and translational mechanisms that contribute to the production of new proteins. Early research on transcription focused on the transcription factor cAMP-responsive element binding protein. Since then, other transcription factors, such as the Nuclear Receptor 4 family of proteins that play a role in memory formation and maintenance have been identified. In addition, several studies have revealed details of epigenetic mechanisms consisting of new types of chemical alterations of DNA such as hydroxymethylation, and various histone modifications in long-term synaptic plasticity and memory. Our understanding of translational control critical for memory formation began with the identification of molecules that impinge on the 5′ and 3′ untranslated regions of mRNAs and continued with the appreciation for local translation near synaptic sites. Lately, a role for noncoding RNAs such as microRNAs in regulating translation factors and other molecules critical for memory has been found. This review describes the past research in brief and mainly focuses on the recent work on molecular mechanisms of transcriptional and translational regulation that form the underpinnings of long-term synaptic plasticity and memory.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia 31061, USA
| | - Spencer G Smith
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia 31061, USA
| |
Collapse
|