1
|
Zorzo C, Arias JL, Méndez M. The removal and addition of cues does not impair spatial retrieval and leads to a different metabolic activity of the limbic network in female rats. Brain Res Bull 2022; 190:22-31. [PMID: 36126874 DOI: 10.1016/j.brainresbull.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022]
Abstract
The retrieval of spatial memories does not always occur in an environment with the same stimuli configuration where the memory was first formed. However, re-exposure to a partial portion of the previously encountered cues can elicit memory successfully. Navigation with contextual changes has received little attention, especially in females. Thus, we aimed to assess memory retrieval using the Morris Water Maze spatial reference protocol in female adult Wistar rats. Rats were trained with five allocentric cues, and retrieval was explored one week later either with the same cues, or with four removed, or with three added cues. We studied the underlying brain oxidative metabolism of the hippocampus, prefrontal, parietal, retrosplenial, entorhinal, and perirhinal cortices through cytochrome c oxidase (CCO) histochemistry. Neither cue removal nor cue addition impaired retrieval performance. Retrieval with a degraded subset of cues led to increased prefrontal, hippocampal, retrosplenial, parietal, and perirhinal CCO activity. Retrieval with extra cues led to an enhancement of CCO activity in the hippocampus and retrosplenial cortex. Different patterns of network intercorrelations were found. The cue-removal group presented a closed reciprocal network, while the group with extra cues had separate parallel networks. Both groups showed a simpler network than the group with no cue modifications. Future research is needed to delve into behavioral and brain-related functions of spatial memory processes under modified environmental conditions.
Collapse
Affiliation(s)
- Candela Zorzo
- Department of Psychology, University of Oviedo, Plaza Feijoo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), E-33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain.
| | - Jorge L Arias
- Department of Psychology, University of Oviedo, Plaza Feijoo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), E-33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain.
| | - Marta Méndez
- Department of Psychology, University of Oviedo, Plaza Feijoo, s/n, E-33003 Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), E-33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain.
| |
Collapse
|
2
|
Sethumadhavan N, Strauch C, Hoang TH, Manahan-Vaughan D. The Perirhinal Cortex Engages in Area and Layer-Specific Encoding of Item Dimensions. Front Behav Neurosci 2022; 15:744669. [PMID: 35058755 PMCID: PMC8763964 DOI: 10.3389/fnbeh.2021.744669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The perirhinal cortex (PRC), subdivided into areas 35 and 36, belongs to the parahippocampal regions that provide polysensory input to the hippocampus. Efferent and afferent connections along its rostro-caudal axis, and of areas 35 and 36, are extremely diverse. Correspondingly functional tasks in which the PRC participates are manifold. The PRC engages, for example, in sensory information processing, object recognition, and attentional processes. It was previously reported that layer II of the caudal area 35 may be critically involved in the encoding of large-scale objects. In the present study we aimed to disambiguate the roles of the different PRC layers, along with areas 35 and 36, and the rostro-caudal compartments of the PRC, in processing information about objects of different dimensions. Here, we compared effects on information encoding triggered by learning about subtle and discretely visible (microscale) object information and overt, highly visible landmark (macroscale) information. To this end, nuclear expression of the immediate early gene Arc was evaluated using fluorescence in situ hybridization. Increased nuclear Arc expression occurred in layers III and V-VI of the middle and caudal parts of area 35 in response to both novel microscale and macroscale object exposure. By contrast, a significant increase in Arc expression occurred in area 36 only in response to microscale objects. These results indicate that area 36 is specifically involved in the encoding of small and less prominently visible items. In contrast, area 35 engages globally (layer III to VI) in the encoding of object information independent of item dimensions.
Collapse
Affiliation(s)
- Nithya Sethumadhavan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christina Strauch
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | - Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Denise Manahan-Vaughan
| |
Collapse
|
3
|
Zorzo C, Arias JL, Méndez M. Hippocampus and cortex are involved in the retrieval of a spatial memory under full and partial cue availability. Behav Brain Res 2021; 405:113204. [PMID: 33647378 DOI: 10.1016/j.bbr.2021.113204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
Retaking routes after a period of time usually occurs in an environment which has suffered from spatial configuration modifications. Thus, the original visual stimuli that allowed us to establish cognitive mapping using an allocentric strategy during the acquisition phase may not remain physically identical at the time of retrieval. However, in the standard experimental paradigms the cues are typically maintained constant. In this study, we explored memory retrieval with spatial modifications from learning in the Morris Water Maze. We trained rats on a reference memory protocol with five cues placed on black curtains that surrounded the pool, and seven days later, we tested memory retrieval under different conditions: maintenance of the five cues, removal of two and four of them, and the addition of three extra ones. Under full-cue and partial cue-conditions, rats showed successful memory retrieval, whereas adding extra cues resulted in impaired retrieval. Furthermore, we assessed brain oxidative metabolism through cytochrome c oxidase (CCO) histochemistry and found that, under full- and partial-cue conditions, there is an enhancement of the hippocampal, prefrontal, retrosplenial, parietal, and rhinal cortex metabolism. Rats that failed to retrieve spatial information in the extra cues condition showed similar or lower CCO activity than controls across many limbic areas. It is suggested that the presence of a partial portion of visual stimuli from learning makes it possible to reactivate the entire memory trace, but extra spatial information hinders retrieval, making it difficult to disengage the novel information from the older knowledge and establish a contextual generalization.
Collapse
Affiliation(s)
- Candela Zorzo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Marta Méndez
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.
| |
Collapse
|
4
|
Sethumadhavan N, Hoang TH, Strauch C, Manahan-Vaughan D. Involvement of the Postrhinal and Perirhinal Cortices in Microscale and Macroscale Visuospatial Information Encoding. Front Behav Neurosci 2020; 14:556645. [PMID: 33192363 PMCID: PMC7584114 DOI: 10.3389/fnbeh.2020.556645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022] Open
Abstract
Whereas the postrhinal cortex (POR) is a critical center for the integration of egocentric and allocentric spatial information, the perirhinal cortex (PRC) plays an important role in the encoding of objects that supports spatial learning. The POR and PRC send afferents to the hippocampus, a structure that builds complex associative memories from the spatial experience. Hippocampal encoding of item-place experience is accompanied by the nuclear expression of immediate early gene (IEGs). Subfields of the Cornus ammonius and subregions of the hippocampus exhibit differentiated and distinct encoding responses, depending on whether the spatial location and relationships of large highly visible items (macroscale encoding) or small partially concealed items (microscale encoding), is learned. But to what extent the PRC and POR support hippocampal processing of different kinds of item-place representations is unclear. Using fluorescence in situ hybridization (FISH), we examined the effect of macroscale (overt, landmark) and microscale (subtle, discrete) item-place learning on the nuclear expression of the IEG, Arc. We observed an increase in Arc mRNA in the caudal part of PRC area 35 and the caudal part of the POR after macroscale, but not microscale item-place learning. The caudal part of PRC area 36, the rostral and middle parts of PRC areas 35 and 36, as well as the middle part of the POR responded to neither type of item. These results suggest that macroscale items may contain a strong identity component that is processed by specific compartments of the PRC and POR. In contrast small, microscale items are not encoded by the POR or PRC, indicating that item dimensions may play a role in the involvement of these structures in item processing.
Collapse
Affiliation(s)
- Nithya Sethumadhavan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Thu-Huong Hoang
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christina Strauch
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
5
|
Collins JA, Dickerson BC. Functional connectivity in category-selective brain networks after encoding predicts subsequent memory. Hippocampus 2018; 29:440-450. [PMID: 30009477 DOI: 10.1002/hipo.23003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022]
Abstract
Activity in category selective regions of the temporal and parietal lobes during encoding has been associated with subsequent memory for face and scene stimuli. Reactivation theories of memory consolidation predict that after encoding connectivity between these category-selective regions and the hippocampus should be modulated and predict recognition memory. However, support for this proposal has been limited in humans. Here, participants completed a resting-state functional MRI (fMRI) scan, followed by face- and place-encoding tasks, followed by another resting-state fMRI scan during which they were asked to think about the stimuli they had previously encountered. Individual differences in face recognition memory were predicted by the degree to which connectivity between face-responsive regions of the fusiform gyrus and perirhinal cortex increased following the face-encoding task. In contrast, individual differences in scene recognition were predicted by connectivity between the hippocampus and a scene-selective region of the retrosplenial cortex before and after the place-encoding task. Our results provide novel evidence for category specificity in the neural mechanisms supporting memory consolidation.
Collapse
Affiliation(s)
- Jessica A Collins
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
6
|
Godinho J, de Oliveira RMW, de Sa-Nakanishi AB, Bacarin CC, Huzita CH, Longhini R, Mello JCP, Nakamura CV, Previdelli IS, Dal Molin Ribeiro MH, Milani H. Ethyl-acetate fraction of Trichilia catigua restores long-term retrograde memory and reduces oxidative stress and inflammation after global cerebral ischemia in rats. Behav Brain Res 2017; 337:173-182. [PMID: 28919157 DOI: 10.1016/j.bbr.2017.08.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 01/03/2023]
Abstract
We originally reported that an ethyl-acetate fraction (EAF) of Trichilia catigua prevented the impairment of water maze learning and hippocampal neurodegeneration after transient global cerebral (TGCI) in mice. We extended that previous study by evaluating whether T. catigua (i) prevents the loss of long-term retrograde memory assessed in the aversive radial maze (AvRM), (ii) confers hippocampal and cortical neuroprotection, and (iii) mitigates oxidative stress and neuroinflammation in rats that are subjected to the four vessel occlusion (4-VO) model of TGCI. In the first experiment, naive rats were trained in the AvRM and then subjected to TGCI. The EAF was administered orally 30min before and 1h after TGCI, and administration continued once per day for 7days post-ischemia. In the second experiment, the EAF was administered 30min before and 1h after TGCI, and protein carbonylation and myeloperoxidase (MPO) activity were assayed 24h and 5days later, respectively. Retrograde memory performance was assessed 8, 15, and 21days post-ischemia. Ischemia caused persistent retrograde amnesia, and this effect was prevented by T. catigua. This memory protection (or preservation) persisted even after the treatment was discontinued, despite the absence of histological neuroprotection. Protein carbonyl group content and MPO activity increased around 43% and 100%, respectively, after TGCI, which were abolished by the EAF of T. catigua. The administration of EAF did not coincide with the days of memory testing. The data indicate that antioxidant and/or antiinflammatory actions in the early phase of ischemia/reperfusion contribute to the long-term antiamnesic effect of T. catigua.
Collapse
Affiliation(s)
- Jacqueline Godinho
- Department of Pharmacology and Therapeutics, State University of Maringa, Maringá, Paraná, Brazil
| | | | | | | | - Claudia Hitomi Huzita
- Department of Pharmacology and Therapeutics, State University of Maringa, Maringá, Paraná, Brazil
| | - Renata Longhini
- Department of Pharmacy, State University of Maringa, Maringá, Paraná, Brazil
| | - João Carlos P Mello
- Department of Pharmacy, State University of Maringa, Maringá, Paraná, Brazil
| | - Celso Vataru Nakamura
- Department of Basic Health Sciences, State University of Maringa, Maringá, Paraná, Brazil
| | | | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringa, Maringá, Paraná, Brazil.
| |
Collapse
|
7
|
Perirhinal cortex involvement in allocentric spatial learning in the rat: Evidence from doubly marked tasks. Hippocampus 2017; 27:507-517. [DOI: 10.1002/hipo.22707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/17/2016] [Accepted: 01/06/2017] [Indexed: 02/05/2023]
|
8
|
Ramos JMJ. Perirhinal cortex supports tactual discrimination tasks with increasing levels of complexity: Retrograde effect. Neurobiol Learn Mem 2016; 131:121-30. [PMID: 27021016 DOI: 10.1016/j.nlm.2016.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/19/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
Abstract
Recent studies have suggested that the perirhinal cortex (Prh) supports representations of feature conjunctions in the visual modality during the acquisition/encoding of complex discriminations. To extend this idea to other sensory modalities and to another stage of the discrimination process, we studied the effect of Prh lesions on the expression of a series of tactual discrimination tasks learned preoperatively. These tasks differed from one another in the degree of feature overlap of the stimuli and in the difficulty of the task. During pre- and post-operative testing phases, rats had to discriminate among 3 stimuli simultaneously exposed in 3 arms of a 4-arm plus-shaped maze. Prh-damaged rats showed a profound impairment in the expression of tactual discrimination tasks when the stimuli had a high or intermediate degree of feature ambiguity, but not when they had a low degree of ambiguity (experiments 1a-1c). In order to experimentally dissociate between subregions within the medial temporal lobe, experiment 2 was conducted to show that hippocampal lesions did not cause any impairment in task expression even when the stimuli had a high degree of feature ambiguity. When the tactual discrimination tasks used simple/individual nonoverlapping features of the stimuli (size), Prh lesions did not affect the expression of these discriminations despite the high level of difficulty of these tasks (experiments 3a and 3b). These findings suggest that, in the somatosensory modality, the Prh plays an essential role in the processing of complex stimuli with overlapping features but not in simple tactual discriminations. Furthermore, the Prh is necessary not just during acquisition but also during expression/performance of the discrimination task.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology, University of Granada, Granada 18071, Spain; Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain.
| |
Collapse
|
9
|
Barry DN, Coogan AN, Commins S. The time course of systems consolidation of spatial memory from recent to remote retention: A comparison of the Immediate Early Genes Zif268, c-Fos and Arc. Neurobiol Learn Mem 2016; 128:46-55. [DOI: 10.1016/j.nlm.2015.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 12/28/2022]
|
10
|
Vilberg KL, Davachi L. Perirhinal-hippocampal connectivity during reactivation is a marker for object-based memory consolidation. Neuron 2013; 79:1232-42. [PMID: 23993700 DOI: 10.1016/j.neuron.2013.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
The present study utilized event-related fMRI to address the role of the human perirhinal cortex (PRC), and its interactions with the hippocampus, in memory consolidation. Participants encoded object-based and scene-based associations and then restudied them either after a "long" or "short" delay during which consolidation could occur. We found that BOLD activation in left PRC and hippocampal-PRC functional connectivity were significantly enhanced during the restudy of the long versus short delay word-object pairs. Secondly, hippocampal-PRC connectivity during restudy of the long delay word-object pairs predicted a subsequent reduction in associative forgetting. By contrast, hippocampal-PRC connectivity did not predict subsequent resistance to forgetting for the short delay or novel associations. Together, these results provide evidence for perirhinal-hippocampal interactions in the selective consolidation of object-based associative memories and provide support for the notion that, during early stages of consolidation, memories become more distributed across brain regions.
Collapse
Affiliation(s)
- Kaia L Vilberg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, 1600 Viceroy Drive, Suite 800, Dallas, TX 75235, USA
| | | |
Collapse
|
11
|
Conejo NM, Cimadevilla JM, González-Pardo H, Méndez-Couz M, Arias JL. Hippocampal inactivation with TTX impairs long-term spatial memory retrieval and modifies brain metabolic activity. PLoS One 2013; 8:e64749. [PMID: 23724089 PMCID: PMC3665627 DOI: 10.1371/journal.pone.0064749] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/16/2013] [Indexed: 01/16/2023] Open
Abstract
Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry. Several brain regions were considered, including the hippocampus and other related structures. Results showed that both unilateral and bilateral hippocampal inactivation impaired spatial memory retrieval. Hence, whereas subjects with bilateral hippocampal inactivation showed a circular swim pattern at the side walls of the pool, unilateral inactivation favoured swimming in the quadrants adjacent to the target one. Analysis of cytochrome oxidase activity disclosed regional differences according to the degree of hippocampal functional blockade. In comparison to control group, animals with bilateral inactivation showed increased CO activity in CA1 and CA3 areas of the hippocampus during retrieval, while the activity of the dentate gyrus substantially decreased. However, unilateral inactivated animals showed decreased CO activity in Ammon's horn and the dentate gyrus. This study demonstrated that retrieval recruits differentially the hippocampal subregions and the balance between them is altered with hippocampal functional lesions.
Collapse
Affiliation(s)
- Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
12
|
Ramos JMJ. Perirhinal cortex lesions produce retrograde but not anterograde amnesia for allocentric spatial information: within-subjects examination. Behav Brain Res 2012; 238:154-9. [PMID: 23103402 DOI: 10.1016/j.bbr.2012.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
Using a reference spatial memory task sensitive to hippocampal lesions, the same groups of rats were subjected to four successive experimental phases to investigate which aspects of spatial cognition are perirhinal cortex dependent. Results showed that the perirhinal cortex is not necessary for acquisition or for long-term spatial memory retention. However, the perirhinal cortex was differentially involved in spatial memory expression depending on whether the original learning took place in an intact brain or in a perirhinal damaged brain. Specifically, only when the lesions were made after learning was a profound impairment in the expression of preoperatively acquired spatial information observed. These results suggest that, in a normal brain, the perirhinal cortex plays an essential role in the expression of spatial information during the post-learning period.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology, University of Granada, Campus Cartuja, Granada 18071, Spain.
| |
Collapse
|
13
|
Maioli S, Gangarossa G, Locchi F, Andrioli A, Bertini G, Rimondini R. Excitotoxic lesion of the perirhinal cortex impairs spatial working memory in a delayed-alternation task. Behav Brain Res 2012; 230:349-54. [PMID: 22391121 DOI: 10.1016/j.bbr.2012.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 02/12/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
The perirhinal cortex (PRh) is strategically located between the neocortex and memory-related structures such as the entorhinal cortex and the hippocampal formation. The pattern of strong reciprocal connections between these areas, together with experimental evidence that PRh damage induces specific memory deficits, has placed this cortical region at the center of a growing interest for its role in learning and memory mechanisms. The aim of the present study is to clarify the involvement of PRh in learning and retention in a novel experimental model of spatial working memory, the water T-maze. The data show that pre-acquisition neurotoxic PRh lesions caused task-learning deficits. This impairment was observed during the acquisition phase as well as the retrieval phase. On the other hand, a post-acquisition PRh neurotoxic lesion failed to impair the acquisition and the retrieval of the water T-maze task performed 32 day after lesion. These results suggest a possible key role of PRh in the acquisition but not in the retention of a working memory task. Furthermore, these results show that the water T-maze may be a suitable learning paradigm to study different components of learning and memory.
Collapse
Affiliation(s)
- Silvia Maioli
- Department of Pharmacology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Ramos JMJ. Preserved learning about allocentric cues but impaired flexible memory expression in rats with hippocampal lesions. Neurobiol Learn Mem 2010; 93:506-14. [PMID: 20109565 DOI: 10.1016/j.nlm.2010.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/09/2010] [Accepted: 01/20/2010] [Indexed: 11/15/2022]
Abstract
Several studies have shown that slight modifications in the standard reference spatial memory procedure normally used for allocentric learning in the Morris water maze and the radial maze, can overcome the classic deficit in allocentric navigation typically observed in rats with hippocampal damage. In these special paradigms, however, there is only intramaze manipulation of a salient stimulus. The present study was designed to investigate whether extramaze manipulations produce a similar outcome. With this aim a four-arm plus-shaped maze and a reference spatial memory paradigm were used, in which the goal arm was marked in two ways: by a prominent extramaze cue (intermittent light), which maintained a constant relation with the goal, and by the extramaze constellation of stimuli around the maze. Experiment 1 showed that, unlike the standard version of the task, using this special training procedure hippocampally-damaged rats could learn a place response as quickly as control animals; importantly, one day after reaching criterion, lesioned and control subjects performed the task perfectly during a transfer test in which the salient extramaze stimulus used during the acquisition was removed. However, although acquisition deficit was overcomed in these lesioned animals, a profound deficit in retention was detected 15 days later. Experiment 2 suggests that although under our special paradigm hippocampal rats can learn a place response, spatial memory only can be expressed when the requisites of behavioral flexibility are minimal. These findings suggest that, under certain circumstances, extrahippocampal structures are sufficient for building a coherent allocentric representation of space; however, flexible memory expression is dependent, fundamentally, on hippocampal functioning.
Collapse
Affiliation(s)
- Juan M J Ramos
- Departamento de Psicología Experimental y Fisiología del Comportamiento, Facultad de Psicología, Campus de Cartuja, Universidad de Granada, Granada 18071, Spain.
| |
Collapse
|
15
|
Engler-Chiurazzi E, Tsang C, Nonnenmacher S, Liang WS, Corneveaux JJ, Prokai L, Huentelman MJ, Bimonte-Nelson HA. Tonic Premarin dose-dependently enhances memory, affects neurotrophin protein levels and alters gene expression in middle-aged rats. Neurobiol Aging 2009; 32:680-97. [PMID: 19883953 DOI: 10.1016/j.neurobiolaging.2009.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 08/26/2009] [Accepted: 09/27/2009] [Indexed: 01/19/2023]
Abstract
Premarin™ is the most commonly prescribed estrogenic component of hormone therapy, given since 1942. The current study is the first examining cognitive effects of tonic Premarin treatment in an animal model. Middle-aged ovariectomized (Ovx) rats received vehicle or one of three doses of Premarin (12, 24 or 36μg daily). Rats were tested on a spatial working and reference memory maze battery. Both medium- and high-dose Premarin enhanced memory retention, while low-dose Premarin impaired learning and memory retention. Correlations with serum hormone levels showed that as the ratio of estrone:17β-estradiol increased, animals tended to show better working memory performance. Taken together with the dissociation of dose-specific estrogenic profiles, results suggest that higher levels of estrone, in the presence of 17β-estradiol concentrations higher than that of Ovx levels, may be beneficial for memory. Moreover, Premarin exerted dose and brain-region specific effects on BDNF and NGF protein levels, with most marked changes in cingulate and perirhinal cortices. Hippocampal gene expression profiling demonstrated significant Premarin-induced transcriptional changes in genes linked to plasticity and cognition. These findings indicate that Premarin can impact memory and the brain, and that dosing should be recognized as a clinically relevant factor possibly affecting the direction and efficacy of cognitive outcome.
Collapse
|