1
|
Bronstone GJ, Harton M, Muldowney M, Reigle J, Funk AJ, O'Donovan SM, McCullumsmith RE, Bauer DE. The C. elegans glutamate transporters GLT-4 and GLT-5 regulate protein expression, behavior, and lifespan. Neurochem Int 2025; 186:105966. [PMID: 40147734 PMCID: PMC12053503 DOI: 10.1016/j.neuint.2025.105966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Glutamate transporters are important for regulating extracellular glutamate levels, impacting neural function and metabolic homeostasis. This study explores the behavioral, lifespan, and proteomic profiles in Caenorhabditis elegans strains with either glt-4 or glt-5 null mutations, highlighting contrasting phenotypes. Δglt-4 mutants displayed impaired mechanosensory and chemotactic responses, reduced lifespans, and decreased expression levels of ribosomal proteins and chaperonins involved in protein synthesis and folding. In contrast, Δglt-5 mutants displayed heightened chemorepulsion, extended lifespans, and upregulation of mitochondrial pyruvate carriers and cytoskeletal proteins. Proteomic profiling via mass spectrometry identified 53 differentially expressed proteins in Δglt-4 mutants and 45 in Δglt-5 mutants. Δglt-4 mutants showed disruptions in ribonucleoprotein complex organization and translational processes, including downregulation of glycogen phosphorylase and V-type ATPase subunits, while Δglt-5 mutants revealed altered metabolic protein expression, such as increased levels of mitochondrial pyruvate carriers and decreased levels of fibrillarin and ribosomal proteins. Gene ontology enrichment analysis highlighted differential regulation of protein biosynthesis and metabolic pathways between the strains. Overall, these findings underscore the distinct, tissue-specific roles of GLT-4 and GLT-5 in C. elegans, with broader implications for glutamate regulation and systemic physiology. The results also reinforce the utility of C. elegans as a model for studying glutamate transporters' impact on behavior, longevity, and proteostasis.
Collapse
Affiliation(s)
- Grace J Bronstone
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA.
| | - Moriah Harton
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA
| | - Maya Muldowney
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA
| | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Biomedical Informatics, University of Cincinnati College of Medicine, Medical Sciences Building 231 Albert Sabin Way, PO Box 670769, Cincinnati, OH, 45267, USA
| | - Adam J Funk
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Sinead M O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA; Neurosciences Institute, ProMedica, 2130 West Central Avenue, Toledo, OH, 43606, USA
| | - Deborah E Bauer
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA.
| |
Collapse
|
2
|
Zhu M, Wang J, Zhu L, Zhu M. Investigations of forgetting in Caenorhabditis elegans. Neurobiol Learn Mem 2025; 220:108061. [PMID: 40350072 DOI: 10.1016/j.nlm.2025.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/17/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
The traditional view considered forgetting as a passive process where memory traces gradually fade due to the natural weakening of neural connections. However, studies on olfactory memory in Drosophila have revealed that forgetting is an active process controlled by specific neural circuits. Caenorhabditis elegans is a widely used model organism in neurobiological research due to its relatively simple nervous system. Despite its simplicity, C. elegans exhibits complex behaviors influenced by environmental factors and prior experiences. Similar to Drosophila, C. elegans can actively initiate neural circuits based on the type of memory that needs to be forgotten, which supports using C. elegans as a model for studying forgetting. These characteristics facilitate the identification of genes and pathways involved in forgetting in C. elegans. In this review, we discuss recent advances in understanding forgetting mechanisms in C. elegans through three well-characterized olfactory learning paradigms. The insights derived from C. elegans offer a valuable framework for understanding the molecular and cellular mechanisms underlying forgetting, with potentially broader implications for memory regulation in more complex organisms.
Collapse
Affiliation(s)
- Man Zhu
- College of Biological and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Jiayi Wang
- College of Biological and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Ling Zhu
- College of Biological and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Man Zhu
- College of Biological and Food Engineering, Qujing Normal University, Qujing 655011, China.
| |
Collapse
|
3
|
Wang PZ, Ge MH, Su P, Wu PP, Wang L, Zhu W, Li R, Liu H, Wu JJ, Xu Y, Zhao JL, Li SJ, Wang Y, Chen LM, Wu TH, Wu ZX. Sensory plasticity caused by up-down regulation encodes the information of short-term learning and memory. iScience 2025; 28:112215. [PMID: 40224011 PMCID: PMC11987006 DOI: 10.1016/j.isci.2025.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Learning and memory are essential for animals' well-being and survival. The underlying mechanisms are a major task of neuroscience studies. In this study, we identified a circuit consisting of ASER, RIC, RIS, and AIY, is required for short-term salt chemotaxis learning (SCL) in C. elegans. ASER NaCl-sensation possesses are remodeled by salt/food-deprivation pared conditioning. RIC integrates the sensory information of NaCl and food availability. It excites ASER and inhibits AIY by tyramine/TYRA-2 and octopamine/OCTR-1 signaling pathways, respectively. By the salt conditioning, RIC NaCl calcium response to NaCl is depressed, thus, the RIC excitation of ASER and inhibition of AIY are suppressed. ASER excites RIS by FLP-14/FRPR-10 signaling. RIS inhibits ASER via PDF-2/PDFR-1 signaling in negative feedback. ASER sensory plasticity caused by RIC plasticity and RIS negative feedback are required for both learning and memory recall. Thus, the sensation plasticity encodes the information of the short-term SCL that facilitates animal adaptation to dynamic environments.
Collapse
Affiliation(s)
- Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Piao-Ping Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Jia Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Hong Wu
- Hunan Research Center of the Basic Discipline for Cell Signaling, State Key Laboratory of Chemo and Biosensing, College of Biology, Hunan University, Changsha, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Gildea M, Santos C, Sanabria F, Sasaki T. An associative account of collective learning. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241907. [PMID: 40144293 PMCID: PMC11937916 DOI: 10.1098/rsos.241907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025]
Abstract
Associative learning is an important adaptive mechanism that is well conserved among a broad range of species. Although it is typically studied in isolated animals, associative learning can occur in the presence of conspecifics in nature. Although many social aspects of individual learning have received much attention, the study of collective learning-the acquisition of knowledge in groups of animals through shared experience-has a much shorter history. Consequently, the conditions under which collective learning emerges and the mechanisms that underlie such emergence are still largely unexplored. Here, we develop a parsimonious model of collective learning based on the complementary integration of associative learning and collective intelligence. The model assumes (i) a simple associative learning rule, based on the Rescorla-Wagner model, in which the actions of conspecifics serve as cues and (ii) a horse-race action selection rule. Simulations of this model show no benefit of group training over individual training in a simple discrimination task (A+/B-). However, a group-training advantage emerges after the discrimination task is reversed (A-/B+). Model predictions suggest that, in a dynamic environment, tracking the actions of conspecifics that are solving the same problem can yield superior learning to individual animals and enhanced performance to the group.
Collapse
Affiliation(s)
- Matthew Gildea
- Department of Psychology, Arizona State University, Tempe, AZ85287, USA
| | - Cristina Santos
- Department of Psychology, Arizona State University, Tempe, AZ85287, USA
- Universidad Anahuac Cancun, Cancun, QR77565, Mexico
| | - Federico Sanabria
- Department of Psychology, Arizona State University, Tempe, AZ85287, USA
| | - Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, GA30602, USA
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY14627, USA
| |
Collapse
|
5
|
Currie SD, Ji Y, Huang Q, Wang JS, Tang L. The impact of early life exposure to individual and combined PFAS on learning, memory, and bioaccumulation in C. elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125257. [PMID: 39515569 DOI: 10.1016/j.envpol.2024.125257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are a group of water-soluble chemicals used for decades with important industrial and commercial applications. Due to their chemical and thermal stability, persistence in the environment, and widespread human exposure, PFAS become an important concern for public health. In this study, eleven highly prevalent PFAS and a reference mixture were selected according to various drinking water sources. The nematode, Caenorhabditis elegans, were exposed to PFAS at 0.1, 1, 10, 100, and 200 μM, and the toxic effects on learning & memory along with the bioaccumulation were investigated using a high-throughput screening (HTS) platform. Our results showed that perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) exhibited significant inhibitory effects (p < 0.05) on learning and memory in both time points at concentrations between 100 and 200 μmol/L. After 48 h of exposure, every PFAS resulted in an inhibition of learning and memory with a concentration of 200 μmol/L. Furthermore, the PFOS and PFBS had the highest bioaccumulation levels after 48 h of exposure. These findings provide valuable insight into the developmental adverse effects associated with exposure and the bioaccumulation of both individual and mixtures of PFAS.
Collapse
Affiliation(s)
- Seth D Currie
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Yuqing Ji
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Crop & Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Qingguo Huang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Crop & Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
6
|
Just BB, Torres de Farias S. Living cognition and the nature of organisms. Biosystems 2024; 246:105356. [PMID: 39426661 DOI: 10.1016/j.biosystems.2024.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
There is no consensus about what cognition is. Different perspectives conceptualize it in different ways. In the same vein, there is no agreement about which systems are truly cognitive. This begs the question, what makes a process or a system cognitive? One of the most conspicuous features of cognition is that it is a set of processes. Cognition, in the end, is a collection of processes such as perception, memory, learning, decision-making, problem-solving, goal-directedness, attention, anticipation, communication, and maybe emotion. There is a debate about what they mean, and which systems possess these processes. One aspect of this problem concerns the level at which cognition and the single processes are conceptualized. To make this scenario clear, evolutionary and self-maintenance arguments are taken. Given the evolutive landscape, one sees processes shared by all organisms and their derivations in specific taxa. No matter which side of the complexity spectrum one favors, the similarities of the simple processes with the complex ones cannot be ignored, and the differences of some complex processes with their simple versions cannot be blurred. A final cognitive framework must make sense of both sides of the spectrum, their differences and similarities. Here, we discuss from an evolutionary perspective the basic elements shared by all living beings and whether these may be necessary and sufficient for understanding the cognitive process. Following these considerations, cognition can be expanded to every living being. Cognition is the set of informational and dynamic processes an organism must interact with and grasp aspects of its world. Understood at their most basic level, perception, memory, learning, problem-solving, decision-making, action, and other cognitive processes are basic features of biological functioning.
Collapse
Affiliation(s)
- Breno B Just
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Laboratório de Estudos Em Memória e Cognição (LEMCOG), Departamento de Psicologia, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK.
| |
Collapse
|
7
|
Hallacy T, Yonar A, Ringstad N, Ramanathan S. Compressed sensing based approach identifies modular neural circuitry driving learned pathogen avoidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588911. [PMID: 39464156 PMCID: PMC11507717 DOI: 10.1101/2024.04.10.588911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An animal's survival hinges on its ability to integrate past information to modify future behavior. The nematode C. elegans adapts its behavior based on prior experiences with pathogen exposure, transitioning from attraction to avoidance of the pathogen. A systematic screen for the neural circuits that integrate the information of previous pathogen exposure to modify behavior has not been feasible because of the lack of tools for neuron type specific perturbations. We overcame this challenge using methods based on compressed sensing to efficiently determine the roles of individual neuron types in learned avoidance behavior. Our screen revealed that distinct sets of neurons drive exit from lawns of pathogenic bacteria and prevent lawn re-entry. Using calcium imaging of freely behaving animals and optogenetic perturbations, we determined the neural dynamics that regulate one key behavioral transition after infection: stalled re-entry into bacterial lawns. We find that key neuron types govern pathogen lawn specific stalling but allow the animal to enter nonpathogenic E. coli lawns. Our study shows that learned pathogen avoidance requires coordinated transitions in discrete neural circuits and reveals the modular structure of this complex adaptive behavioral response to infection.
Collapse
Affiliation(s)
| | - Abdullah Yonar
- Departments of Molecular and Cellular Biology, and of Stem Cell and Regenerative Biology, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sharad Ramanathan
- Departments of Molecular and Cellular Biology, and of Stem Cell and Regenerative Biology, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Lead contact
| |
Collapse
|
8
|
Vedantham K, Niu L, Ma R, Connelly L, Nagella A, Wang SJ, Wang ZW. Track-A-Worm 2.0: A Software Suite for Quantifying Properties of C. elegans Locomotion, Bending, Sleep, and Action Potentials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612524. [PMID: 39314462 PMCID: PMC11418985 DOI: 10.1101/2024.09.12.612524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Comparative analyses of locomotor behavior and cellular electrical properties between wild-type and mutant C. elegans are crucial for exploring the gene basis of behaviors and the underlying cellular mechanisms. Although many tools have been developed by research labs and companies, their application is often hindered by implementation difficulties or lack of features specifically suited for C. elegans. Track-A-Worm 2.0 addresses these challenges with three key components: WormTracker, SleepTracker, and Action Potential (AP) Analyzer. WormTracker accurately quantifies a comprehensive set of locomotor and body bending metrics, reliably distinguish between the ventral and dorsal sides, continuously tracks the animal using a motorized stage, and seamlessly integrates external devices, such as a light source for optogenetic stimulation. SleepTracker detects and quantifies sleep-like behavior in freely moving animals. AP Analyzer assesses the resting membrane potential, afterhyperpolarization level, and various AP properties, including threshold, amplitude, mid-peak width, rise and decay times, and maximum and minimum slopes. Importantly, it addresses the challenge of AP threshold quantification posed by the absence of a pre-upstroke inflection point. Track-A-Worm 2.0 is potentially a valuable tool for many C. elegans research labs due to its powerful functionality and ease of implementation.
Collapse
Affiliation(s)
- Kiranmayi Vedantham
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ryan Ma
- Health Research Program, University of Connecticut, Storrs, CT, USA
| | - Liam Connelly
- Health Research Program, University of Connecticut, Storrs, CT, USA
| | - Anusha Nagella
- Health Research Program, University of Connecticut, Storrs, CT, USA
| | - Sijie Jason Wang
- MD Program, University of Connecticut School of Medicine, Farmington, CT
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
9
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Ornelas IM, Carrilho BDS, Ventura MAVDC, Domith I, de V Silveira CM, Dos Santos VF, Delou JM, Moll F, Pereira HMG, Junqueira M, Aguilaniu H, Rehen S. Lysergic acid diethylamide induces behavioral changes in Caenorhabditis elegans. Neurosci Lett 2024; 837:137903. [PMID: 39025433 DOI: 10.1016/j.neulet.2024.137903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Lysergic acid diethylamide (LSD) is a synthetic psychedelic compound with potential therapeutic value for psychiatric disorders. This study aims to establish Caenorhabditis elegans as an in vivo model for examining LSD's effects on locomotor behavior. Our results demonstrate that LSD is absorbed by C. elegans and that the acute treatment reduces animal speed, similar to the role of endogenous serotonin. This response is mediated in part by the serotonergic receptors SER-1 and SER-4. Our findings highlight the potential of this nematode as a new experimental model in psychedelic research.
Collapse
Affiliation(s)
- Isis M Ornelas
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Beatriz de S Carrilho
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Matheus Antonio V de C Ventura
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ivan Domith
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil; IDOR/Pioneer Science Initiative, Rio de Janeiro, RJ 22281-010, Brazil
| | | | - Vanessa F Dos Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - João M Delou
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Francisco Moll
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | | | - Magno Junqueira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Hugo Aguilaniu
- Instituto Serrapilheira, Rio de Janeiro, Rio de Janeiro, 22431-050, Brazil
| | - Stevens Rehen
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil; Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2141-902, Brazil.
| |
Collapse
|
11
|
Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci 2024; 16:1428244. [PMID: 39161341 PMCID: PMC11330810 DOI: 10.3389/fnagi.2024.1428244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual's overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Buck Institute for Research on Ageing, Novato, CA, United States
| |
Collapse
|
12
|
Haley JA, Chalasani SH. C. elegans foraging as a model for understanding the neuronal basis of decision-making. Cell Mol Life Sci 2024; 81:252. [PMID: 38849591 PMCID: PMC11335288 DOI: 10.1007/s00018-024-05223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024]
Abstract
Animals have evolved to seek, select, and exploit food sources in their environment. Collectively termed foraging, these ubiquitous behaviors are necessary for animal survival. As a foundation for understanding foraging, behavioral ecologists established early theoretical and mathematical frameworks which have been subsequently refined and supported by field and laboratory studies of foraging animals. These simple models sought to explain how animals decide which strategies to employ when locating food, what food items to consume, and when to explore the environment for new food sources. These foraging decisions involve integration of prior experience with multimodal sensory information about the animal's current environment and internal state. We suggest that the nematode Caenorhabditis elegans is well-suited for a high-resolution analysis of complex goal-oriented behaviors such as foraging. We focus our discussion on behavioral studies highlighting C. elegans foraging on bacteria and summarize what is known about the underlying neuronal and molecular pathways. Broadly, we suggest that this simple model system can provide a mechanistic understanding of decision-making and present additional avenues for advancing our understanding of complex behavioral processes.
Collapse
Affiliation(s)
- Jessica A Haley
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Nicholson RM, Levis NA, Ragsdale EJ. Genetic regulators of a resource polyphenism interact to couple predatory morphology and behaviour. Proc Biol Sci 2024; 291:20240153. [PMID: 38835272 DOI: 10.1098/rspb.2024.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Phenotypic plasticity often requires the coordinated response of multiple traits observed individually as morphological, physiological or behavioural. The integration, and hence functionality, of this response may be influenced by whether and how these component traits share a genetic basis. In the case of polyphenism, or discrete plasticity, at least part of the environmental response is categorical, offering a simple readout for determining whether and to what degree individual components of a plastic response can be decoupled. Here, we use the nematode Pristionchus pacificus, which has a resource polyphenism allowing it to be a facultative predator of other nematodes, to understand the genetic integration of polyphenism. The behavioural and morphological consequences of perturbations to the polyphenism's genetic regulatory network show that both predatory activity and ability are strongly influenced by morphology, different axes of morphological variation are associated with different aspects of predatory behaviour, and rearing environment can decouple predatory morphology from behaviour. Further, we found that interactions between some polyphenism-modifying genes synergistically affect predatory behaviour. Our results show that the component traits of an integrated polyphenic response can be decoupled and, in principle, selected upon individually, and they suggest that multiple routes to functionally comparable phenotypes are possible.
Collapse
Affiliation(s)
- Rose M Nicholson
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Nicholas A Levis
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Erik J Ragsdale
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| |
Collapse
|
14
|
Hughes S, Hessel EVS. Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity. Crit Rev Toxicol 2024; 54:330-343. [PMID: 38832580 DOI: 10.1080/10408444.2024.2342448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Despite the growing epidemiological evidence of an association between toxin exposure and developmental neurotoxicity (DNT), systematic testing of DNT is not mandatory in international regulations for admission of pharmaceuticals or industrial chemicals. However, to date around 200 compounds, ranging from pesticides, pharmaceuticals and industrial chemicals, have been tested for DNT in the current OECD test guidelines (TG-443 or TG-426). There are calls for the development of new approach methodologies (NAMs) for DNT, which has resulted in a DNT testing battery using in vitro human cell-based assays. These assays provide a means to elucidate the molecular mechanisms of toxicity in humans which is lacking in animal-based toxicity tests. However, cell-based assays do not represent all steps of the complex process leading to DNT. Validated models with a multi-organ network of pathways that interact at the molecular, cellular and tissue level at very specific timepoints in a life cycle are currently missing. Consequently, whole model organisms are being developed to screen for, and causally link, new molecular targets of DNT compounds and how they affect whole brain development and neurobehavioral endpoints. Given the practical and ethical restraints associated with vertebrate testing, lower animal models that qualify as 3 R (reduce, refine and replace) models, including the nematode (Caenorhabditis elegans) and the zebrafish (Danio rerio) will prove particularly valuable for unravelling toxicity pathways leading to DNT. Although not as complex as the human brain, these 3 R-models develop a complete functioning brain with numerous neurodevelopmental processes overlapping with human brain development. Importantly, the main signalling pathways relating to (neuro)development, metabolism and growth are highly conserved in these models. We propose the use of whole model organisms specifically zebrafish and C. elegans for DNT relevant endpoints.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
15
|
Armada G, Roque S, Serre-Miranda C, Ferreira L, Vale A, Rodrigues AJ, Hong W, Correia-Neves M, Vieira N. SNX27: A trans-species cognitive modulator with implications for anxiety and stress susceptibility. Neurobiol Stress 2024; 30:100619. [PMID: 38500791 PMCID: PMC10945257 DOI: 10.1016/j.ynstr.2024.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Sorting Nexin 27 (SNX27) is a brain-enriched endosome-associated cargo adaptor that shapes excitatory control, being relevant for cognitive and reward processing, and for several neurological conditions. Despite this, SNX27's role in the nervous system remains poorly explored. To further understand SNX27 function, we performed an extensive behavioral characterization comprising motor, cognitive and emotional dimensions of SNX27+/- mice. Furthermore, attending on the recently described association between SNX27 function and cellular stress signaling mechanisms in vitro, we explored SNX27-stress interplay using a Caenorhabditis elegans Δsnx-27 mutant and wild-type (WT) rodents after stress exposure. SNX27+/- mice, as C. elegans Δsnx-27 mutants, present cognitive impairments, highlighting a conserved role for SNX27 in cognitive modulation across species. Interestingly, SNX27 downmodulation leads to anxiety-like behavior in mice evaluated in the Elevated Plus Maze (EPM). This anxious phenotype is associated with increased dendritic complexity of the bed nucleus of the stria terminalis (BNST) neurons, and increased complexity of the basolateral amygdala (BLA) pyramidal neurons. These findings highlight the still unknown role of SNX27 in anxiety regulation. Moreover, we uncovered a direct link between SNX27 dysfunction and stress susceptibility in C. elegans and found that stress-exposed rodents display decreased SNX27 levels in stress-susceptible brain regions. Altogether, we provided new insights on SNX27's relevance in anxiety-related behaviors and neuronal structure in stress-associated brain regions.
Collapse
Affiliation(s)
- Gisela Armada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Cláudia Serre-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Liliana Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana Vale
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
16
|
Li L, Li Y, Zeng K, Wang Q. Mercuric sulfide nanoparticles suppress the neurobehavioral functions of Caenorhabditis elegans through a Skp1-dependent mechanism. Food Chem Toxicol 2024; 186:114576. [PMID: 38458533 DOI: 10.1016/j.fct.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Cinnabar is the naturally occurring mercuric sulfide (HgS) and concerns about its safety have been grown. However, the molecular mechanism of HgS-related neurotoxicity remains unclear. S-phase kinase-associated protein 1 (Skp1), identified as the target protein of HgS, plays a crucial role in the development of neurological diseases. This study aims to investigate the neurotoxic effects and molecular mechanism of HgS based on Skp1 using the Caenorhabditis elegans (C. elegans) model. We prepared the HgS nanoparticles and conducted a comparative analysis of neurobehavioral differences in both wild-type C. elegans (N2) and a transgenic strain of C. elegans (VC1241) with a knockout of the SKP1 homologous gene after exposure to HgS nanoparticles. Our results showed that HgS nanoparticles could suppress locomotion, defecation, egg-laying, and associative learning behaviors in N2 C. elegans, while no significant alterations were observed in the VC1241 C. elegans. Furthermore, we conducted a 4D label-free proteomics analysis and screened 504 key proteins significantly affected by HgS nanoparticles through Skp1. These proteins play pivotal roles in various pathways, including SNARE interactions in vesicular transport, TGF-beta signaling pathway, calcium signaling pathway, FoxO signaling pathway, etc. In summary, HgS nanoparticles at high doses suppress the neurobehavioral functions of C. elegans through a Skp1-dependent mechanism.
Collapse
Affiliation(s)
- Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, China.
| |
Collapse
|
17
|
Watanabe H, Dijkstra JM, Nagatsu T. Parkinson's Disease: Cells Succumbing to Lifelong Dopamine-Related Oxidative Stress and Other Bioenergetic Challenges. Int J Mol Sci 2024; 25:2009. [PMID: 38396687 PMCID: PMC10888576 DOI: 10.3390/ijms25042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The core pathological event in Parkinson's disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Johannes M. Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| |
Collapse
|
18
|
Rahmani A, McMillen A, Allen E, Minervini C, Chew YL. Behavioral Tests for Associative Learning in Caenorhabditis elegans. Methods Mol Biol 2024; 2746:21-46. [PMID: 38070077 DOI: 10.1007/978-1-0716-3585-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Learning is critical for survival as it provides the capacity to adapt to a changing environment. At the molecular and cellular level, learning leads to alterations within neural circuits that include synaptic rewiring, synaptic plasticity, and protein level/gene expression changes. There has been substantial progress in recent years on dissecting how learning and memory is regulated at the molecular and cellular level, including the use of compact invertebrate nervous systems as experimental models. This progress has been facilitated by the establishment of robust behavioral assays that generate a quantifiable readout of the extent to which animals learn and remember. This chapter will focus on protocols of behavioral tests for associative learning using the nematode Caenorhabditis elegans, with its unparalleled genetic tractability, compact nervous system of ~300 neurons, high level of conservation with mammalian systems, and amenability to a suite of behavioral tools and analyses. Specifically, we will provide a detailed description of the methods for two behavioral assays that model associative learning, one measuring appetitive olfactory learning and the other assaying aversive gustatory learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Anna McMillen
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Ericka Allen
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Caitlin Minervini
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
19
|
McMillen A, Chew Y. Neural mechanisms of dopamine function in learning and memory in Caenorhabditis elegans. Neuronal Signal 2024; 8:NS20230057. [PMID: 38572143 PMCID: PMC10987485 DOI: 10.1042/ns20230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 04/05/2024] Open
Abstract
Research into learning and memory over the past decades has revealed key neurotransmitters that regulate these processes, many of which are evolutionarily conserved across diverse species. The monoamine neurotransmitter dopamine is one example of this, with countless studies demonstrating its importance in regulating behavioural plasticity. However, dopaminergic neural networks in the mammalian brain consist of hundreds or thousands of neurons, and thus cannot be studied at the level of single neurons acting within defined neural circuits. The nematode Caenorhabditis elegans (C. elegans) has an experimentally tractable nervous system with a completely characterized synaptic connectome. This makes it an advantageous system to undertake mechanistic studies into how dopamine encodes lasting yet flexible behavioural plasticity in the nervous system. In this review, we synthesize the research to date exploring the importance of dopaminergic signalling in learning, memory formation, and forgetting, focusing on research in C. elegans. We also explore the potential for dopamine-specific fluorescent biosensors in C. elegans to visualize dopaminergic neural circuits during learning and memory formation in real-time. We propose that the use of these sensors in C. elegans, in combination with optogenetic and other light-based approaches, will further illuminate the detailed spatiotemporal requirements for encoding behavioural plasticity in an accessible experimental system. Understanding the key molecules and circuit mechanisms that regulate learning and forgetting in more compact invertebrate nervous systems may reveal new druggable targets for enhancing memory storage and delaying memory loss in bigger brains.
Collapse
Affiliation(s)
- Anna McMillen
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Yee Lian Chew
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, South Australia, Australia
| |
Collapse
|
20
|
Sterling P, Laughlin S. Why an animal needs a brain. Anim Cogn 2023; 26:1751-1762. [PMID: 38041700 DOI: 10.1007/s10071-023-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 12/03/2023]
Abstract
In Principles of Neural Design (2015, MIT Press), inspired by Charles Darwin, Sterling and Laughlin undertook the unfashionable task of distilling principles from facts in the technique-driven, data-saturated domain of neuroscience. Their starting point for deriving the organizing principles of brains are two brainless single-celled organisms, Escherichia coli and Paramecium, and the 302-neuron brain of the nematode Caenorhabditis elegans. The book is an exemplar in how to connect the dots between simpler and (much) more complex organisms in a particular area. Here, they have generously agreed to republish an abridged version of Chapter 2 (Why an Animal Needs a Brain), in which many of their principles are first described.
Collapse
Affiliation(s)
- Peter Sterling
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Simon Laughlin
- Department of Zoology, University of Cambridge, Cambridge, England
| |
Collapse
|
21
|
Mangalath A, Thekkuveettil A. Olfactory imprinting enhances associative learning and memory in C. elegans. Biochem Biophys Res Commun 2023; 674:109-116. [PMID: 37419031 DOI: 10.1016/j.bbrc.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Learning and memory are fundamental processes for an organism's normal physiological function. Learning can occur at any stage of the organism's physiological development. Imprinted memories formed during the early developmental stage, unlike learning and memory, can last a lifetime. It is not clear whether these two types of memories are interlinked. In this study, we investigated whether imprinted memory influences adult learning and memory in a C. elegans model system. We trained the worms for short-term (STAM) and long-term associated memory (LTAM) towards butanone (BT) after conditioning them for imprinted memory towards isoamyl alcohol (IAA). We observed that these worms had improved learning abilities. However, functional imaging revealed that the worms had a long-term depression in the firing pattern in the AIY interneuron, indicating that there were significant changes in neuronal excitation pattern after imprinting, which could explain the enhanced behavioural alterations in animals after imprinting.
Collapse
Affiliation(s)
- Aswathy Mangalath
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695012, India
| | - Anoopkumar Thekkuveettil
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695012, India.
| |
Collapse
|
22
|
Chandak P, Chakraborti U, Annagiri S. Using pupae as appetitive reinforcement to study visual and tactile associative learning in the Ponerine ant Diacamma indicum. Sci Rep 2023; 13:15609. [PMID: 37731033 PMCID: PMC10511714 DOI: 10.1038/s41598-023-42439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
Associative learning is of great importance to animals, as it enhances their ability to navigate, forage, evade predation and improve fitness. Even though associative learning abilities of Hymenopterans have been explored, many of these studies offered food as appetitive reinforcement. In the current study, we focus on tactile and visual cue learning in an ant Diacamma indicum using a Y-maze setup with pupa as a positive reinforcement. Using pupa as a reward resulted in a significantly higher proportion of ants completing the training in a shorter time as compared to using food as reinforcement. Ants spent significantly more time in the conditioned arm for both visual cues (white dots or black dots) and tactile cues (rough or smooth surfaces) presented on the floor when associated with pupa, thus showing that they were capable of associative learning. On encountering a conflict between visual and tactile cues during the test, ants chose to spend significantly more time on the arm with the tactile cues indicating that they had made a stronger association between pupa and the tactile cue as compared to the visual cue during training. Using pupa as an ecologically relevant reward, we show that these solitary foraging ants living in small colonies are capable of visual and tactile associative learning and are likely to learn tactile cues over visual cues in association with pupa.
Collapse
Affiliation(s)
- Parth Chandak
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Udipta Chakraborti
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Sumana Annagiri
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India.
| |
Collapse
|
23
|
Moro CA, Sony SA, Franklin LP, Dong S, Peifer MM, Wittig KE, Hanna-Rose W. Adenylosuccinate lyase deficiency affects neurobehavior via perturbations to tyramine signaling in Caenorhabditis elegans. PLoS Genet 2023; 19:e1010974. [PMID: 37773959 PMCID: PMC10566684 DOI: 10.1371/journal.pgen.1010974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
Adenylosuccinate lyase deficiency is an ultrarare congenital metabolic disorder associated with muscle weakness and neurobehavioral dysfunction. Adenylosuccinate lyase is required for de novo purine biosynthesis, acting twice in the pathway at non-sequential steps. Genetic models can contribute to our understanding of the etiology of disease phenotypes and pave the way for development of therapeutic treatments. Here, we establish the first model to specifically study neurobehavioral aspects of adenylosuccinate lyase deficiency. We show that reduction of adsl-1 function in C. elegans is associated with a novel learning phenotype in a gustatory plasticity assay. The animals maintain capacity for gustatory plasticity, evidenced by a change in their behavior in response to cue pairing. However, their behavioral output is distinct from that of control animals. We link substrate accumulation that occurs upon adsl-1 deficiency to an unexpected perturbation in tyrosine metabolism and show that a lack of tyramine mediates the behavioral changes through action on the metabotropic TYRA-2 tyramine receptor. Our studies reveal a potential for wider metabolic perturbations, beyond biosynthesis of purines, to impact behavior under conditions of adenylosuccinate lyase deficiency.
Collapse
Affiliation(s)
- Corinna A. Moro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sabrina A. Sony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Latisha P. Franklin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Shirley Dong
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mia M. Peifer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kathryn E. Wittig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
24
|
LeDoux J, Birch J, Andrews K, Clayton NS, Daw ND, Frith C, Lau H, Peters MAK, Schneider S, Seth A, Suddendorf T, Vandekerckhove MMP. Consciousness beyond the human case. Curr Biol 2023; 33:R832-R840. [PMID: 37607474 DOI: 10.1016/j.cub.2023.06.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
There is growing interest in the relationship been AI and consciousness. Joseph LeDoux and Jonathan Birch thought it would be a good moment to put some of the big questions in this area to some leading experts. The challenge of addressing the questions they raised was taken up by Kristin Andrews, Nicky Clayton, Nathaniel Daw, Chris Frith, Hakwan Lau, Megan Peters, Susan Schneider, Anil Seth, Thomas Suddendorf, and Marie Vanderkerckhoeve.
Collapse
|
25
|
Madirolas G, Al-Asmar A, Gaouar L, Marie-Louise L, Garza-Enríquez A, Rodríguez-Rada V, Khona M, Dal Bello M, Ratzke C, Gore J, Pérez-Escudero A. Caenorhabditis elegans foraging patterns follow a simple rule of thumb. Commun Biol 2023; 6:841. [PMID: 37580527 PMCID: PMC10425387 DOI: 10.1038/s42003-023-05220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Rules of thumb are behavioral algorithms that approximate optimal behavior while lowering cognitive and sensory costs. One way to reduce these costs is by simplifying the representation of the environment: While the theoretically optimal behavior may depend on many environmental variables, a rule of thumb may use a smaller set of variables that performs reasonably well. Experimental proof of this simplification requires an exhaustive mapping of all relevant combinations of several environmental parameters, which we performed for Caenorhabditis elegans foraging by covering systematically combinations of food density (across 4 orders of magnitude) and food type (across 12 bacterial strains). We found that worms' response is dominated by a single environmental variable: food density measured as number of bacteria per unit surface. They disregard other factors such as biomass content or bacterial strain. We also measured experimentally the impact on fitness of each type of food, determining that the rule is near-optimal and therefore constitutes a rule of thumb that leverages the most informative environmental variable. These results set the stage for further investigations into the underlying genetic and neural mechanisms governing this simplification process, and into its role in the evolution of decision-making strategies.
Collapse
Affiliation(s)
- Gabriel Madirolas
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Alid Al-Asmar
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Lydia Gaouar
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Leslie Marie-Louise
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Andrea Garza-Enríquez
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Valentina Rodríguez-Rada
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Mikail Khona
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martina Dal Bello
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christoph Ratzke
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, Calwerstrasse 7/1, 72076, Tübingen, Germany
| | - Jeff Gore
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfonso Pérez-Escudero
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France.
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
26
|
Deshe N, Eliezer Y, Hoch L, Itskovits E, Bokman E, Ben-Ezra S, Zaslaver A. Inheritance of associative memories and acquired cellular changes in C. elegans. Nat Commun 2023; 14:4232. [PMID: 37454110 PMCID: PMC10349803 DOI: 10.1038/s41467-023-39804-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Experiences have been shown to modulate behavior and physiology of future generations in some contexts, but there is limited evidence for inheritance of associative memory in different species. Here, we trained C. elegans nematodes to associate an attractive odorant with stressful starvation conditions and revealed that this associative memory was transmitted to the F1 progeny who showed odor-evoked avoidance behavior. Moreover, the F1 and the F2 descendants of trained animals exhibited odor-evoked cellular stress responses, manifested by the translocation of DAF-16/FOXO to cells' nuclei. Sperm, but not oocytes, transmitted these odor-evoked cellular stress responses which involved H3K9 and H3K36 methylations, the small RNA pathway machinery, and intact neuropeptide secretion. Activation of a single chemosensory neuron sufficed to induce a serotonin-mediated systemic stress response in both the parental trained generation and in its progeny. Moreover, inheritance of the cellular stress responses increased survival chances of the progeny as exposure to the training odorant allowed the animals to prepare in advance for an impending adversity. These findings suggest that in C. elegans associative memories and cellular changes may be transferred across generations.
Collapse
Affiliation(s)
- Noa Deshe
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yifat Eliezer
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Lihi Hoch
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Eyal Itskovits
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Eduard Bokman
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shachaf Ben-Ezra
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
27
|
Becerra D, Calixto A, Orio P. The Conscious Nematode: Exploring Hallmarks of Minimal Phenomenal Consciousness in Caenorhabditis Elegans. Int J Psychol Res (Medellin) 2023; 16:87-104. [PMID: 38106963 PMCID: PMC10723751 DOI: 10.21500/20112084.6487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 03/13/2023] [Indexed: 12/19/2023] Open
Abstract
While subcellular components of cognition and affectivity that involve the interaction between experience, environment, and physiology -such as learning, trauma, or emotion- are being identified, the physical mechanisms of phenomenal consciousness remain more elusive. We are interested in exploring whether ancient, simpler organisms such as nematodes have minimal consciousness. Is there something that feels like to be a worm? Or are worms blind machines? 'Simpler' models allow us to simultaneously extract data from multiple levels such as slow and fast neural dynamics, structural connectivity, molecular dynamics, behavior, decision making, etc., and thus, to test predictions of the current frameworks in dispute. In the present critical review, we summarize the current models of consciousness in order to reassess in light of the new evidence whether Caenorhabditis elegans, a nematode with a nervous system composed of 302 neurons, has minimal consciousness. We also suggest empirical paths to further advance consciousness research using C. elegans.
Collapse
Affiliation(s)
- Diego Becerra
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Doctorado en Ciencias, mención Biofísica y Biología Computacional, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| |
Collapse
|
28
|
Pannone L, Muto V, Nardecchia F, Di Rocco M, Marchei E, Tosato F, Petrini S, Onorato G, Lanza E, Bertuccini L, Manti F, Folli V, Galosi S, Di Schiavi E, Leuzzi V, Tartaglia M, Martinelli S. The recurrent pathogenic Pro890Leu substitution in CLTC causes a generalized defect in synaptic transmission in Caenorhabditis elegans. Front Mol Neurosci 2023; 16:1170061. [PMID: 37324589 PMCID: PMC10264582 DOI: 10.3389/fnmol.2023.1170061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
De novo CLTC mutations underlie a spectrum of early-onset neurodevelopmental phenotypes having developmental delay/intellectual disability (ID), epilepsy, and movement disorders (MD) as major clinical features. CLTC encodes the widely expressed heavy polypeptide of clathrin, a major component of the coated vesicles mediating endocytosis, intracellular trafficking, and synaptic vesicle recycling. The underlying pathogenic mechanism is largely unknown. Here, we assessed the functional impact of the recurrent c.2669C > T (p.P890L) substitution, which is associated with a relatively mild ID/MD phenotype. Primary fibroblasts endogenously expressing the mutated protein show reduced transferrin uptake compared to fibroblast lines obtained from three unrelated healthy donors, suggesting defective clathrin-mediated endocytosis. In vitro studies also reveal a block in cell cycle transition from G0/G1 to the S phase in patient's cells compared to control cells. To demonstrate the causative role of the p.P890L substitution, the pathogenic missense change was introduced at the orthologous position of the Caenorhabditis elegans gene, chc-1 (p.P892L), via CRISPR/Cas9. The resulting homozygous gene-edited strain displays resistance to aldicarb and hypersensitivity to PTZ, indicating defective release of acetylcholine and GABA by ventral cord motor neurons. Consistently, mutant animals show synaptic vesicle depletion at the sublateral nerve cords, and slightly defective dopamine signaling, highlighting a generalized deficit in synaptic transmission. This defective release of neurotransmitters is associated with their secondary accumulation at the presynaptic membrane. Automated analysis of C. elegans locomotion indicates that chc-1 mutants move slower than their isogenic controls and display defective synaptic plasticity. Phenotypic profiling of chc-1 (+/P892L) heterozygous animals and transgenic overexpression experiments document a mild dominant-negative behavior for the mutant allele. Finally, a more severe phenotype resembling that of chc-1 null mutants is observed in animals harboring the c.3146 T > C substitution (p.L1049P), homologs of the pathogenic c.3140 T > C (p.L1047P) change associated with a severe epileptic phenotype. Overall, our findings provide novel insights into disease mechanisms and genotype-phenotype correlations of CLTC-related disorders.
Collapse
Affiliation(s)
- Luca Pannone
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Valentina Muto
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Martina Di Rocco
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Marchei
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Tosato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Giada Onorato
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Enrico Lanza
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | | | - Filippo Manti
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Viola Folli
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
29
|
Pritz C, Itskovits E, Bokman E, Ruach R, Gritsenko V, Nelken T, Menasherof M, Azulay A, Zaslaver A. Principles for coding associative memories in a compact neural network. eLife 2023; 12:e74434. [PMID: 37140557 PMCID: PMC10159626 DOI: 10.7554/elife.74434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/08/2023] [Indexed: 05/05/2023] Open
Abstract
A major goal in neuroscience is to elucidate the principles by which memories are stored in a neural network. Here, we have systematically studied how four types of associative memories (short- and long-term memories, each as positive and negative associations) are encoded within the compact neural network of Caenorhabditis elegans worms. Interestingly, sensory neurons were primarily involved in coding short-term, but not long-term, memories, and individual sensory neurons could be assigned to coding either the conditioned stimulus or the experience valence (or both). Moreover, when considering the collective activity of the sensory neurons, the specific training experiences could be decoded. Interneurons integrated the modulated sensory inputs and a simple linear combination model identified the experience-specific modulated communication routes. The widely distributed memory suggests that integrated network plasticity, rather than changes to individual neurons, underlies the fine behavioral plasticity. This comprehensive study reveals basic memory-coding principles and highlights the central roles of sensory neurons in memory formation.
Collapse
Affiliation(s)
- Christian Pritz
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Eyal Itskovits
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Eduard Bokman
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Rotem Ruach
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Vladimir Gritsenko
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Tal Nelken
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Mai Menasherof
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Aharon Azulay
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute for Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
30
|
Elimari N, Lafargue G. Neural correlates of performance monitoring vary as a function of competition between automatic and controlled processes: An ERP study. Conscious Cogn 2023; 110:103505. [PMID: 37001443 DOI: 10.1016/j.concog.2023.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023]
Abstract
Dual process theories of attitude formation propose that an evolutionary old associative system automatically generates subjective judgments by processing mere spatiotemporal contiguity between paired objects, subjects, or events. These judgments can potentially contradict our well-reasoned evaluations and highjack decisional or behavioral outcomes. Contrary to this perspective, other models stress the exclusive work of a single propositional system that consciously process co-occurrences between environmental cues and produce propositions, i.e., mental statements that capture the specific manner through which stimuli are linked. We constructed an experiment on the premise that it would be possible, if the associative system does produce attitudes in a parallel non-conscious fashion, to condition two mutually exclusive attitudes (one implicit, the other explicit) toward a same stimulus. Through explicit ratings, inhibition performance, and neural correlates of performance monitoring, we assessed whether there was a discrepancy between stimuli that were conditioned with (1) the two systems working in harmony (i.e., producing congruent attitudes), or (2) the two systems working in competition (i.e., producing incongruent attitudes). Compared with congruent stimuli, incongruent stimuli consistently elicited more neutral liking scores, higher response times and error rates, as well as a diminished amplitudes in two well-studied neural correlates of automatic error detection (i.e., error-related negativity) and conscious appraisal of error commission (i.e., error-related positivity). Our findings are discussed in the light of evolutionary psychology, dual-process theories of attitude formation and theoretical frameworks on the functional significance of error-related neural markers.
Collapse
Affiliation(s)
- Nassim Elimari
- Université de Reims Champagne Ardenne, C2S, EA 6291, France
| | - Gilles Lafargue
- Université de Reims Champagne Ardenne, C2S, EA 6291, France.
| |
Collapse
|
31
|
Feresten AH, Bhat JM, Yu AJ, Zapf R, Rankin CH, Hutter H. wrk-1 and rig-5 control pioneer and follower axon navigation in the ventral nerve cord of Caenorhabditis elegans in a nid-1 mutant background. Genetics 2023; 223:iyac187. [PMID: 36573271 PMCID: PMC9991498 DOI: 10.1093/genetics/iyac187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/10/2022] [Indexed: 12/28/2022] Open
Abstract
During nervous system development, neurons send out axons, which must navigate large distances to reach synaptic targets. Axons grow out sequentially. The early outgrowing axons, pioneers, must integrate information from various guidance cues in their environment to determine the correct direction of outgrowth. Later outgrowing follower axons can at least in part navigate by adhering to pioneer axons. In Caenorhabditis elegans, the right side of the largest longitudinal axon tract, the ventral nerve cord, is pioneered by the AVG axon. How the AVG axon navigates is only partially understood. In this study, we describe the role of two members of the IgCAM family, wrk-1 and rig-5, in AVG axon navigation. While wrk-1 and rig-5 single mutants do not show AVG navigation defects, both mutants have highly penetrant pioneer and follower navigation defects in a nid-1 mutant background. Both mutations increase the fraction of follower axons following the misguided pioneer axon. We found that wrk-1 and rig-5 act in different genetic pathways, suggesting that we identified two pioneer-independent guidance pathways used by follower axons. We assessed general locomotion, mechanosensory responsiveness, and habituation to determine whether axonal navigation defects impact nervous system function. In rig-5 nid-1 double mutants, we found no significant defects in free movement behavior; however, a subpopulation of animals shows minor changes in response duration habituation after mechanosensory stimulation. These results suggest that guidance defects of axons in the motor circuit do not necessarily lead to major movement or behavioral defects but impact more complex behavioral modulation.
Collapse
Affiliation(s)
- Abigail H Feresten
- Department of Biological Sciences, and Center for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| | - Jaffar M Bhat
- Department of Biological Sciences, and Center for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| | - Alex J Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T2B5, Canada
| | - Richard Zapf
- Department of Biological Sciences, and Center for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T2B5, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Harald Hutter
- Department of Biological Sciences, and Center for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| |
Collapse
|
32
|
Lanier VJ, White AM, Faumont S, Lockery SR. Theory and practice of using cell strainers to sort Caenorhabditis elegans by size. PLoS One 2023; 18:e0280999. [PMID: 36757993 PMCID: PMC9910635 DOI: 10.1371/journal.pone.0280999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
The nematode Caenorhabditis elegans is a model organism widely used in basic, translational, and industrial research. C. elegans development is characterized by five morphologically distinct stages, including four larval stages and the adult stage. Stages differ in a variety of aspects including size, gene expression, physiology, and behavior. Enrichment for a particular developmental stage is often the first step in experimental design. When many hundreds of worms are required, the standard methods of enrichment are to grow a synchronized population of hatchlings for a fixed time, or to sort a mixed population of worms according to size. Current size-sorting methods have higher throughput than synchronization and avoid its use of harsh chemicals. However, these size-sorting methods currently require expensive instrumentation or custom microfluidic devices, both of which are unavailable to the majority C. elegans laboratories. Accordingly, there is a need for inexpensive, accessible sorting strategies. We investigated the use of low-cost, commercially available cell strainers to filter C. elegans by size. We found that the probability of recovery after filtration as a function of body size for cell strainers of three different mesh sizes is well described by logistic functions. Application of these functions to predict filtration outcomes revealed non-ideal properties of filtration of worms by cell strainers that nevertheless enhanced filtration outcomes. Further, we found that serial filtration using a pair of strainers that have different mesh sizes can be used to enrich for particular larval stages with a purity close to that of synchronization, the most widely used enrichment method. Throughput of the cell strainer method, up to 14,000 worms per minute, greatly exceeds that of other enrichment methods. We conclude that size sorting by cell strainers is a useful addition to the array of existing methods for enrichment of particular developmental stages in C. elegans.
Collapse
Affiliation(s)
- Vincent J. Lanier
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| | - Amanda M. White
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| | - Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| | - Shawn R. Lockery
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
33
|
Izquierdo PG, Charvet CL, Neveu C, Green AC, Tattersall JEH, Holden-Dye L, O'Connor V. Modelling organophosphate intoxication in C. elegans highlights nicotinic acetylcholine receptor determinants that mitigate poisoning. PLoS One 2023; 18:e0284786. [PMID: 37083685 PMCID: PMC10121051 DOI: 10.1371/journal.pone.0284786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
Organophosphate intoxication via acetylcholinesterase inhibition executes neurotoxicity via hyper stimulation of acetylcholine receptors. Here, we use the organophosphate paraoxon-ethyl to treat C. elegans and use its impact on pharyngeal pumping as a bio-assay to model poisoning through these neurotoxins. This assay provides a tractable measure of acetylcholine receptor mediated contraction of body wall muscle. Investigation of the time dependence of organophosphate treatment and the genetic determinants of the drug-induced inhibition of pumping highlight mitigating modulation of the effects of paraoxon-ethyl. We identified mutants that reduce acetylcholine receptor function protect against the consequence of intoxication by organophosphates. Data suggests that reorganization of cholinergic signalling is associated with organophosphate poisoning. This reinforces the under investigated potential of using therapeutic approaches which target a modulation of nicotinic acetylcholine receptor function to treat the poisoning effects of this important class of neurotoxins.
Collapse
Affiliation(s)
- Patricia G Izquierdo
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Claude L Charvet
- French National Institute for Agricultural Research (INRA), Infectiologie Animale et Santé Publique, Nouzilly, France
| | - Cedric Neveu
- French National Institute for Agricultural Research (INRA), Infectiologie Animale et Santé Publique, Nouzilly, France
| | - A Christopher Green
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - John E H Tattersall
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Lindy Holden-Dye
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Vincent O'Connor
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
34
|
Al-Asmar A, Pérez-Escudero A. How many neurons does it take to tell left from right? Eur J Neurosci 2022; 56:5957-5959. [PMID: 35599242 PMCID: PMC10084024 DOI: 10.1111/ejn.15722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Accepted: 04/07/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Alid Al-Asmar
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Alfonso Pérez-Escudero
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
35
|
Zhao A, Jin H, Fan G, Li Y, Li C, Li Q, Ma X, Zhao T, Sun S, Liu S, Gao Y, Qi S. Inhibition of the expression of rgs-3 alleviates propofol-induced decline in learning and memory in Caenorhabditis elegans. CNS Neurosci Ther 2022; 29:306-316. [PMID: 36284438 PMCID: PMC9804065 DOI: 10.1111/cns.14004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Exposure to anesthesia leads to extensive neurodegeneration and long-term cognitive deficits in the developing brain. Caenorhabditis elegans also shows persistent behavioral changes during development after exposure to anesthetics. Clinical and rodent studies have confirmed that altered expression of the regulators of G protein signaling (RGS) in the nervous system is a factor contributing to neurodegenerative and psychological diseases. Evidence from preclinical studies has suggested that RGS controls drug-induced plasticity, including morphine tolerance and addiction. This study aimed to observe the effect of propofol exposure in the neurodevelopmental stage on learning and memory in the L4 stage and to study whether this effect is related to changes in rgs-3 expression. METHODS Caenorhabditis elegans were exposed to propofol at the L1 stage, and learning and memory abilities were observed at the L4 stage. The expression of rgs-3 and the nuclear distribution of EGL-4 were determined to study the relevant mechanisms. Finally, RNA interference was performed on rgs-3-expressing cells after propofol exposure. Then, we observed their learning and memory abilities. RESULTS Propofol time- and dose-dependently impaired the learning capacity. Propofol induced a decline in non-associative and associative long-term memory, rgs-3 upregulation, and a failure of nuclear accumulation of EGL-4/PKG in AWC neurons. Inhibition of rgs-3 could alleviate the propofol-induced changes. CONCLUSION Inhibition of the expression of rgs-3 alleviated propofol-induced learning and memory deficits in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Ayang Zhao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hongjiang Jin
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Guibo Fan
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yan Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chenglong Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qi Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaofei Ma
- Department of ICUThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tianyang Zhao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Siqi Sun
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shuai Liu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yueyue Gao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Sihua Qi
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
36
|
Pontes-Filho S, Olsen K, Yazidi A, Riegler MA, Halvorsen P, Nichele S. Towards the Neuroevolution of Low-level artificial general intelligence. Front Robot AI 2022; 9:1007547. [PMID: 36313249 PMCID: PMC9613950 DOI: 10.3389/frobt.2022.1007547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
In this work, we argue that the search for Artificial General Intelligence should start from a much lower level than human-level intelligence. The circumstances of intelligent behavior in nature resulted from an organism interacting with its surrounding environment, which could change over time and exert pressure on the organism to allow for learning of new behaviors or environment models. Our hypothesis is that learning occurs through interpreting sensory feedback when an agent acts in an environment. For that to happen, a body and a reactive environment are needed. We evaluate a method to evolve a biologically-inspired artificial neural network that learns from environment reactions named Neuroevolution of Artificial General Intelligence, a framework for low-level artificial general intelligence. This method allows the evolutionary complexification of a randomly-initialized spiking neural network with adaptive synapses, which controls agents instantiated in mutable environments. Such a configuration allows us to benchmark the adaptivity and generality of the controllers. The chosen tasks in the mutable environments are food foraging, emulation of logic gates, and cart-pole balancing. The three tasks are successfully solved with rather small network topologies and therefore it opens up the possibility of experimenting with more complex tasks and scenarios where curriculum learning is beneficial.
Collapse
Affiliation(s)
- Sidney Pontes-Filho
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Anis Yazidi
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- AI Lab—OsloMet Artificial Intelligence Lab, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | - Michael A. Riegler
- Department of Holistic Systems, Simula Metropolitan Centre for Digital Engineering, Oslo, Norway
- Department of Computer Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Pål Halvorsen
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Holistic Systems, Simula Metropolitan Centre for Digital Engineering, Oslo, Norway
| | - Stefano Nichele
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- AI Lab—OsloMet Artificial Intelligence Lab, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
- Department of Holistic Systems, Simula Metropolitan Centre for Digital Engineering, Oslo, Norway
- Department of Computer Science and Communication, Østfold University College, Halden, Norway
| |
Collapse
|
37
|
Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans. Nutrients 2022; 14:nu14194199. [PMID: 36235851 PMCID: PMC9570774 DOI: 10.3390/nu14194199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, both extracts improved the resistance towards oxidative stress, and decreased the intracellular level of reactive oxygen species. Chemical analyses of the extracts revealed the presence of several bioactive compounds such as chlorogenic acid, cinnamic acid, and quercetin. A fraction from the C. chinensis extract enriched in zingibroside R1 improved the lifespan, the survival after heat stress, and the locomotion in a manner similar to the full C. chinensis extract. Thus, zingibroside R1 could be (partly) responsible for the observed health benefits of C. chinensis. Furthermore, a hydroxygallic acid derivative and the sterol lipid 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol are abundantly present in the C. chinensis extract and its most bioactive fraction, but hardly in E. ulmoides, making them good candidates to explain the overall healthspan benefits of C. chinensis compared to the specific positive effects on stress resistance by E. ulmoides. Our findings highlight the overall anti-aging effects of C. chinensis in C. elegans and provide first hints about the components responsible for these effects.
Collapse
|
38
|
Behrens MR, Ruder WC. Smart Magnetic Microrobots Learn to Swim with Deep Reinforcement Learning. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 4:2200023. [PMID: 38463142 PMCID: PMC10923539 DOI: 10.1002/aisy.202200023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 03/12/2024]
Abstract
Swimming microrobots are increasingly developed with complex materials and dynamic shapes and are expected to operate in complex environments in which the system dynamics are difficult to model and positional control of the microrobot is not straightforward to achieve. Deep reinforcement learning is a promising method of autonomously developing robust controllers for creating smart microrobots, which can adapt their behavior to operate in uncharacterized environments without the need to model the system dynamics. This article reports the development of a smart helical magnetic hydrogel microrobot that uses the soft actor critic reinforcement learning algorithm to autonomously derive a control policy which allows the microrobot to swim through an uncharacterized biomimetic fluidic environment under control of a time varying magnetic field generated from a three-axis array of electromagnets. The reinforcement learning agent learned successful control policies from both state vector input and raw images, and the control policies learned by the agent recapitulated the behavior of rationally designed controllers based on physical models of helical swimming microrobots. Deep reinforcement learning applied to microrobot control is likely to significantly expand the capabilities of the next generation of microrobots.
Collapse
Affiliation(s)
- Michael R. Behrens
- Department of Bioengineering, University of Pittsburgh; 300 Technology Drive, Pittsburgh, PA 15213, USA
| | - Warren C. Ruder
- Department of Bioengineering, University of Pittsburgh; 300 Technology Drive, Pittsburgh, PA 15213, USA
- Department of Mechanical Engineering, Carnegie Mellon University; 5000 Forbes Ave. Pittsburgh, PA 15213, USA
| |
Collapse
|
39
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
40
|
Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111166. [PMID: 35176489 DOI: 10.1016/j.cbpa.2022.111166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.
Collapse
|
41
|
Kalia V, Niedzwiecki MM, Bradner JM, Lau FK, Anderson FL, Bucher ML, Manz KE, Schlotter AP, Fuentes ZC, Pennell KD, Picard M, Walker DI, Hu WT, Jones DP, Miller GW. Cross-species metabolomic analysis of tau- and DDT-related toxicity. PNAS NEXUS 2022; 1:pgac050. [PMID: 35707205 PMCID: PMC9186048 DOI: 10.1093/pnasnexus/pgac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/28/2022] [Indexed: 01/29/2023]
Abstract
Exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) has been associated with increased risk of Alzheimer's disease (AD), a disease also associated with hyperphosphorylated tau (p-tau) protein aggregation. We investigated whether exposure to DDT can exacerbate tau protein toxicity in Caenorhabditiselegans using a transgenic strain that expresses human tau protein prone to aggregation by measuring changes in size, swim behavior, respiration, lifespan, learning, and metabolism. In addition, we examined the association between cerebrospinal fluid (CSF) p-tau protein-as a marker of postmortem tau burden-and global metabolism in both a human population study and in C. elegans, using the same p-tau transgenic strain. From the human population study, plasma and CSF-derived metabolic features associated with p-tau levels were related to drug, amino acid, fatty acid, and mitochondrial metabolism pathways. A total of five metabolites overlapped between plasma and C. elegans, and four between CSF and C. elegans. DDT exacerbated the inhibitory effect of p-tau protein on growth and basal respiration. In the presence of p-tau protein, DDT induced more curling and was associated with reduced levels of amino acids but increased levels of uric acid and adenosylselenohomocysteine. Our findings in C. elegans indicate that DDT exposure and p-tau aggregation both inhibit mitochondrial function and DDT exposure can exacerbate the mitochondrial inhibitory effects of p-tau aggregation. Further, biological pathways associated with exposure to DDT and p-tau protein appear to be conserved between species.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Fion K Lau
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Faith L Anderson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Katherine E Manz
- School of Engineering, Brown University, Providence, RI, 02912 USA
| | - Alexa Puri Schlotter
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, 02912 USA
| | - Martin Picard
- Department of Neurology, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032 USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - William T Hu
- Department of Neurology, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, 08901 USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, 30322 USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| |
Collapse
|
42
|
Barlow IL, Feriani L, Minga E, McDermott-Rouse A, O'Brien TJ, Liu Z, Hofbauer M, Stowers JR, Andersen EC, Ding SS, Brown AEX. Megapixel camera arrays enable high-resolution animal tracking in multiwell plates. Commun Biol 2022; 5:253. [PMID: 35322206 PMCID: PMC8943053 DOI: 10.1038/s42003-022-03206-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/01/2022] [Indexed: 01/13/2023] Open
Abstract
Tracking small laboratory animals such as flies, fish, and worms is used for phenotyping in neuroscience, genetics, disease modelling, and drug discovery. An imaging system with sufficient throughput and spatiotemporal resolution would be capable of imaging a large number of animals, estimating their pose, and quantifying detailed behavioural differences at a scale where hundreds of treatments could be tested simultaneously. Here we report an array of six 12-megapixel cameras that record all the wells of a 96-well plate with sufficient resolution to estimate the pose of C. elegans worms and to extract high-dimensional phenotypic fingerprints. We use the system to study behavioural variability across wild isolates, the sensitisation of worms to repeated blue light stimulation, the phenotypes of worm disease models, and worms' behavioural responses to drug treatment. Because the system is compatible with standard multiwell plates, it makes computational ethological approaches accessible in existing high-throughput pipelines.
Collapse
Affiliation(s)
- Ida L Barlow
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Luigi Feriani
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Eleni Minga
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Adam McDermott-Rouse
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Thomas James O'Brien
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Ziwei Liu
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Siyu Serena Ding
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
- Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - André E X Brown
- Institute of Clinical Sciences, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, London, UK.
| |
Collapse
|
43
|
Sakelaris BG, Li Z, Sun J, Banerjee S, Booth V, Gourgou E. Modelling learning in C. elegans chemosensory and locomotive circuitry for T-maze navigation. Eur J Neurosci 2021; 55:354-376. [PMID: 34894022 PMCID: PMC9269982 DOI: 10.1111/ejn.15560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022]
Abstract
Recently, a new type of Caenorhabditis elegans associative learning was reported, where nematodes learn to reach a target arm in an empty T‐maze, after they have successfully located reward (food) in the same side arm of a similar, baited, training maze. Here, we present a simplified mathematical model of C. elegans chemosensory and locomotive circuitry that replicates C. elegans navigation in a T‐maze and predicts the underlying mechanisms generating maze learning. Based on known neural circuitry, the model circuit responds to food‐released chemical cues by modulating motor neuron activity that drives simulated locomotion. We show that, through modulation of interneuron activity, such a circuit can mediate maze learning by acquiring a turning bias, even after a single training session. Simulated nematode maze navigation during training conditions in food‐baited mazes and during testing conditions in empty mazes is validated by comparing simulated behaviour with new experimental video data, extracted through the implementation of a custom‐made maze tracking algorithm. Our work provides a mathematical framework for investigating the neural mechanisms underlying this novel learning behaviour in C. elegans. Model results predict neuronal components involved in maze and spatial learning and identify target neurons and potential neural mechanisms for future experimental investigations into this learning behaviour.
Collapse
Affiliation(s)
| | - Zongyu Li
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Jiawei Sun
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Shurjo Banerjee
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor.,Department of Anesthesiology, University of Michigan, Ann Arbor
| | - Eleni Gourgou
- Department of Mechanical Engineering, University of Michigan, Ann Arbor.,Institute of Gerontology, Medical School, University of Michigan, Ann Arbor
| |
Collapse
|
44
|
Ozawa K, Shinkai Y, Kako K, Fukamizu A, Doi M. The molecular and neural regulation of ultraviolet light phototaxis and its food-associated learning behavioral plasticity in C. elegans. Neurosci Lett 2021; 770:136384. [PMID: 34890717 DOI: 10.1016/j.neulet.2021.136384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
Ultraviolet light is quite toxic to all the animals and evoke the avoidance behavior of UV. The soil nematode Caenorhabditis elegans senses UV and is known to avoid UV by using four sensory neurons. However, it is not clear what signaling molecules act for UV avoidance in the neuronal pathway constituted of four sensory neurons. In addition, it is not clear whether this harmful environmental signal can be associated with other benefit signals such as food. In this study, by using newly developed assay system, we found that C. elegans can associate UV and food and changes behavioral strategy against harmful UV signal. This is the first indication that C. elegans shows associate learning with UV and food. Using our assay system, we also found that glutamate is used as a transmitter in both the UV avoidance and UV associate learning neural circuits. However, one sensory neuron showed a significant role for associative learning, compared to a complimentary role in four sensory neurons for direct associative learning, and different sets of glutamate receptors seemed to be acting for UV avoidance and UV associate learning. These findings suggest that a distinct neuronal network is used for UV learning compared to that for direct avoidance behavior of UV.
Collapse
Affiliation(s)
- Kazuki Ozawa
- College of Agro-Biological Resource Sciences, School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoichi Shinkai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Koichiro Kako
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
45
|
Fitch WT. Information and the single cell. Curr Opin Neurobiol 2021; 71:150-157. [PMID: 34844102 DOI: 10.1016/j.conb.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Understanding the evolution of cognition requires an understanding of the costs and benefits of neural computation. This requires analysis of neuronal circuitry in terms of information-processing efficiency, ultimately cashed out in terms of ATP expenditures relative to adaptive problem-solving abilities. Despite a preoccupation in neuroscience with the synapse as the source of stored neural information, it is clear that, along with synaptic weights and electrochemical dynamics, neurons have multiple mechanisms which store and process information, including 'wetware' (protein phosphorylation, gene transcription, and so on) and cell morphology (dendritic form). Insights into non-synaptic information-processing can be gained by examining the surprisingly complex abilities of single-celled organisms ('cellular cognition') because neurons share many of the same abilities. Cells provide the fundamental level at which information processing interfaces with gene expression, and cell-internal information-processing mechanisms are both powerful and energetically efficient. Understanding cellular computation should be a central goal of research on cognitive evolution.
Collapse
|
46
|
Ippolito D, Thapliyal S, Glauser DA. Ca 2+/CaM binding to CaMKI promotes IMA-3 importin binding and nuclear translocation in sensory neurons to control behavioral adaptation. eLife 2021; 10:71443. [PMID: 34766550 PMCID: PMC8635976 DOI: 10.7554/elife.71443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022] Open
Abstract
Sensory and behavioral plasticity are essential for animals to thrive in changing environments. As key effectors of intracellular calcium signaling, Ca2+/calmodulin-dependent protein kinases (CaMKs) can bridge neural activation with the many regulatory processes needed to orchestrate sensory adaptation, including by relaying signals to the nucleus. Here, we elucidate the molecular mechanism controlling the cell activation-dependent nuclear translocation of CMK-1, the Caenorhabditis elegans ortholog of mammalian CaMKI/IV, in thermosensory neurons in vivo. We show that an intracellular Ca2+ concentration elevation is necessary and sufficient to favor CMK-1 nuclear import. The binding of Ca2+/CaM to CMK-1 increases its affinity for IMA-3 importin, causing a redistribution with a relatively slow kinetics, matching the timescale of sensory adaptation. Furthermore, we show that this mechanism enables the encoding of opposite nuclear signals in neuron types with opposite calcium-responses and that it is essential for experience-dependent behavioral plasticity and gene transcription control in vivo. Since CaMKI/IV are conserved regulators of adaptable behaviors, similar mechanisms could exist in other organisms and for other sensory modalities.
Collapse
Affiliation(s)
- Domenica Ippolito
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Saurabh Thapliyal
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
47
|
Bernal-Gamboa R, García-Salazar J, Gámez AM. Analysis of Habituation Learning in Mealworm Pupae ( Tenebrio molitor). Front Psychol 2021; 12:745866. [PMID: 34721226 PMCID: PMC8551911 DOI: 10.3389/fpsyg.2021.745866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
The decline of response as a consequence of repeated stimulation is known as habituation. The goal of the present experiments was extending the knowledge about habituation of abdominal contractions in the pupa of Tenebrio molitor. Both experiments consisted of two phases. During Phase 1, all groups were exposed to a continuous stimulus (light in Experiment 1 and vibration in Experiment 2). At the beginning of this phase, pupae showed a high number of abdominal contractions. However, during the last minute of Phase 1, the number of abdominal contractions was lower. In the next phase, the pupae were divided in different groups to test for response recovery. We found an increase in the abdominal contractions when subjects were exposed to a different stimulus, be it within the same or in a distinct sensory modality. In addition, we also reported response recovery when the pupae were re-exposed to the original stimuli after a resting period. Results indicate that the increase in responding cannot be explained by either sensory adaptation or fatigue. The findings are consistent with the perspective that suggests that habituation plays a major role in the survival of the species, even in non-feeding developmental stages.
Collapse
Affiliation(s)
- Rodolfo Bernal-Gamboa
- Facultad de Psicología, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jesús García-Salazar
- Facultad de Psicología, Universidad Nacional Autónoma de México, México City, Mexico
| | - A Matías Gámez
- Departamento de Psicología, Universidad de Córdoba, Córdoba, Spain.,Departamento de Psicología, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
48
|
Yu AJ, Rankin CH. Neurobiology: From genome and connectome to understanding behavior. Curr Biol 2021; 31:R1135-R1138. [PMID: 34637717 DOI: 10.1016/j.cub.2021.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many forms of synaptic plasticity are mediated by changes in the abundance, density, and expression levels of postsynaptic ionotropic receptors. A new study identifies the endogenous ligands of five 'orphan' aminergic ligand-gated ion channels in Caenorhabditis elegans, functionally characterizes these channels, and explores the role of one of them in a simple form of learning.
Collapse
Affiliation(s)
- Alex J Yu
- Djavad Mowfaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine H Rankin
- Djavad Mowfaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
49
|
Godini R, Handley A, Pocock R. Transcription Factors That Control Behavior-Lessons From C. elegans. Front Neurosci 2021; 15:745376. [PMID: 34646119 PMCID: PMC8503520 DOI: 10.3389/fnins.2021.745376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.
Collapse
|
50
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|