1
|
Pastore F, Gittinger H, Raab S, Tschuri S, Ksienzyk B, Konstandin NP, Schneider S, Rothenberg-Thurley M, Horny HP, Werner M, Sauerland MC, Amler S, Görlich D, Berdel WE, Wörmann B, Braess J, Hiddemann W, Tischer J, Herold T, Metzeler KH, Spiekermann K. Acute megakaryoblastic leukaemia shows high frequency of chromosome 1q aberrations and dismal outcome. Br J Haematol 2023; 202:1165-1177. [PMID: 37455345 DOI: 10.1111/bjh.18982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Acute megakaryoblastic leukaemia (AMKL) is associated with poor prognosis. Limited information is available on its cytogenetics, molecular genetics and clinical outcome. We performed genetic analyses, evaluated prognostic factors and the value of allogeneic haematopoietic stem cell transplantation (allo-HSCT) in a homogenous adult AMKL patient cohort. We retrospectively analysed 38 adult patients with AMKL (median age: 58 years, range: 21-80). Most received intensive treatment in AML Cooperative Group (AMLCG) trials between 2001 and 2016. Cytogenetic data showed an accumulation of adverse risk markers according to ELN 2017 and an unexpected high frequency of structural aberrations on chromosome arm 1q (33%). Most frequently, mutations occurred in TET2 (23%), TP53 (23%), JAK2 (19%), PTPN11 (19%) and RUNX1 (15%). Complete remission rate in 33 patients receiving intensive chemotherapy was 33% and median overall survival (OS) was 33 weeks (95% CI: 21-45). Patients undergoing allo-HSCT (n = 14) had a superior median OS (68 weeks; 95% CI: 11-126) and relapse-free survival (RFS) of 27 weeks (95% CI: 4-50), although cumulative incidence of relapse after allo-HSCT was high (62%). The prognosis of AMKL is determined by adverse genetic risk factors and therapy resistance. So far allo-HSCT is the only potentially curative treatment option in this dismal AML subgroup.
Collapse
Affiliation(s)
- Friederike Pastore
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Gittinger
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Susanne Raab
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Tschuri
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Bianka Ksienzyk
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Nikola P Konstandin
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Schneider
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Institute of Human Genetics, University Hospital LMU, Munich, Germany
| | - Maja Rothenberg-Thurley
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Martin Werner
- Institute of Surgical Pathology, University of Freiburg, Freiburg, Germany
| | - Maria C Sauerland
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Susanne Amler
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | | | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Johanna Tischer
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), Munich, Germany
| | - Klaus H Metzeler
- Department of Hematology and Cell Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Karsten Spiekermann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Li J, Kalev‐Zylinska ML. Advances in molecular characterization of pediatric acute megakaryoblastic leukemia not associated with Down syndrome; impact on therapy development. Front Cell Dev Biol 2023; 11:1170622. [PMID: 37325571 PMCID: PMC10267407 DOI: 10.3389/fcell.2023.1170622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML) in which leukemic blasts have megakaryocytic features. AMKL makes up 4%-15% of newly diagnosed pediatric AML, typically affecting young children (less than 2 years old). AMKL associated with Down syndrome (DS) shows GATA1 mutations and has a favorable prognosis. In contrast, AMKL in children without DS is often associated with recurrent and mutually exclusive chimeric fusion genes and has an unfavorable prognosis. This review mainly summarizes the unique features of pediatric non-DS AMKL and highlights the development of novel therapies for high-risk patients. Due to the rarity of pediatric AMKL, large-scale multi-center studies are needed to progress molecular characterization of this disease. Better disease models are also required to test leukemogenic mechanisms and emerging therapies.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
| | - Maggie L. Kalev‐Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
3
|
Li T, Wang A, Wu P, Chen M, Wang H. Acute monocytic leukemia with KMT2A:MLLT10 transformed to AML-M7 in a pediatric patient. Pediatr Blood Cancer 2023:e30445. [PMID: 37248168 DOI: 10.1002/pbc.30445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023]
Affiliation(s)
- Ting Li
- Department of Laboratory Medicine, Beijing Ludaopei Hospital, Beijing, China
| | - Aixian Wang
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang, China
| | - Ping Wu
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang, China
| | - Man Chen
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang, China
| | - Hui Wang
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang, China
| |
Collapse
|
4
|
Balbuena-Merle RI, Tormey CA, DiAdamo A, Rinder HM, Siddon AJ. Monocytic Acute Myeloid Leukemias with KM2TA Translocations to Chromosome 17q that May Clinically Mimic Acute Promyelocytic Leukemia. Lab Med 2020; 52:290-296. [PMID: 32984885 DOI: 10.1093/labmed/lmaa078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Acute promyelocytic leukemia (APL) with variant RARA translocation, eg, t(11;17), is not sensitive to all-trans retinoic acid and requires distinct chemotherapy. However, there are some leukemic entities that may mimic aspects of the clinical and/or laboratory picture of APL and cause confusion because of karyotype nomenclature. Therefore, recognition of such entities may be of therapeutic and prognostic significance. METHODS We present 2 cases of acute myeloid leukemia (AML) with t(11;17) that were clinically concerning for APL based primarily on clinical presentation but were ultimately diagnosed as AML with monocytic differentiation. RESULTS Both leukemias harbored KMT2A translocations, one located near but not involving RARA and the other with SEPT9. CONCLUSION In leukemias that clinically and/or immunophenotypically mimic APL, identification of specific gene translocations can lead to the correct diagnosis and may carry therapeutic/prognostic implications.
Collapse
Affiliation(s)
- Raisa I Balbuena-Merle
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut.,Pathology and Laboratory Medicine Service, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Henry M Rinder
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut.,Internal Medicine (Hematology), Yale University School of Medicine, New Haven, Connecticut
| | - Alexa J Siddon
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
5
|
Sun J, Zheng MY, Li YW, Zhang SW. Structure and function of Septin 9 and its role in human malignant tumors. World J Gastrointest Oncol 2020; 12:619-631. [PMID: 32699577 PMCID: PMC7340996 DOI: 10.4251/wjgo.v12.i6.619] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/03/2020] [Accepted: 04/25/2020] [Indexed: 02/05/2023] Open
Abstract
The treatment and prognosis of malignant tumors are closely related to the time when the tumors are diagnosed; the earlier the diagnosis of the tumor, the better the prognosis. However, most tumors are not detected in the early stages of screening and diagnosis. It is of great clinical significance to study the correlation between multiple pathogeneses of tumors and explore simple, safe, specific, and sensitive molecular indicators for early screening, diagnosis, and prognosis. The Septin 9 (SEPT9) gene has been found to be associated with a variety of human diseases, and it plays a role in the development of tumors. SEPT9 is a member of the conserved family of cytoskeletal GTPase, which consists of a P-loop-based GTP-binding domain flanked by a variable N-terminal region and a C-terminal region. SEPT9 is involved in many biological processes such as cytokinesis, polarization, vesicle trafficking, membrane reconstruction, deoxyribonucleic acid repair, cell migration, and apoptosis. Several studies have shown that SEPT9 may serve as a marker for early screening, diagnosis, and prognosis of some malignant tumors, and have the potential to become a new target for anti-cancer therapy. This article reviews the progress in research on the SEPT9 gene in early screening, diagnosis, and prognosis of tumors.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Min-Ying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yu-Wei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Shi-Wu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|