1
|
Dorgans K, Kuhn B, Uusisaari MY. Imaging Subthreshold Voltage Oscillation With Cellular Resolution in the Inferior Olive in vitro. Front Cell Neurosci 2020; 14:607843. [PMID: 33381015 PMCID: PMC7767970 DOI: 10.3389/fncel.2020.607843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Voltage imaging with cellular resolution in mammalian brain slices is still a challenging task. Here, we describe and validate a method for delivery of the voltage-sensitive dye ANNINE-6plus (A6+) into tissue for voltage imaging that results in higher signal-to-noise ratio (SNR) than conventional bath application methods. The not fully dissolved dye was injected into the inferior olive (IO) 0, 1, or 7 days prior to acute slice preparation using stereotactic surgery. We find that the voltage imaging improves after an extended incubation period in vivo in terms of labeled volume, homogeneous neuropil labeling with saliently labeled somata, and SNR. Preparing acute slices 7 days after the dye injection, the SNR is high enough to allow single-trial recording of IO subthreshold oscillations using wide-field (network-level) as well as high-magnification (single-cell level) voltage imaging with a CMOS camera. This method is easily adaptable to other brain regions where genetically-encoded voltage sensors are prohibitively difficult to use and where an ultrafast, pure electrochromic sensor, like A6+, is required. Due to the long-lasting staining demonstrated here, the method can be combined, for example, with deep-brain imaging using implantable GRIN lenses.
Collapse
Affiliation(s)
- Kevin Dorgans
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Zhou WL, Short SM, Rich MT, Oikonomou KD, Singh MB, Sterjanaj EV, Antic SD. Branch specific and spike-order specific action potential invasion in basal, oblique, and apical dendrites of cortical pyramidal neurons. NEUROPHOTONICS 2015; 2:021006. [PMID: 26157997 PMCID: PMC4478750 DOI: 10.1117/1.nph.2.2.021006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
In neocortical pyramidal neurons, action potentials (APs) propagate from the axon into the dendritic tree to influence distal synapses. Traditionally, AP backpropagation was studied in the thick apical trunk. Here, we used the principles of optical imaging developed by Cohen to investigate AP invasion into thin dendritic branches (basal, oblique, and tuft) of prefrontal cortical L5 pyramidal neurons. Multisite optical recordings from neighboring dendrites revealed a clear dichotomy between two seemingly equal dendritic branches belonging to the same cell ("sister branches"). We documented the variable efficacy of AP invasion in basal and oblique branches by revealing their AP voltage waveforms. Using fast multisite calcium imaging, we found that trains of APs are filtered differently between two apical tuft branches. Although one dendritic branch passes all spikes in an AP train, another branch belonging to the same neuron, same cortical layer, and same path distance from the cell body, experiences only one spike. Our data indicate that the vast differences in dendritic voltage and calcium transients, detected in dendrites of pyramidal neurons, arise from a nonuniform distribution of A-type [Formula: see text] conductance, an aggregate number of branch points in the path of the AP propagation and minute differences in dendritic diameter.
Collapse
Affiliation(s)
- Wen-Liang Zhou
- University of Connecticut, Stem Cell Institute, Institute for Systems Genomics, UConn Health, Department of Neuroscience, 263 Farmington Avenue, Farmington, Connecticut 06030-3401, United States
| | - Shaina M. Short
- University of Connecticut, Stem Cell Institute, Institute for Systems Genomics, UConn Health, Department of Neuroscience, 263 Farmington Avenue, Farmington, Connecticut 06030-3401, United States
| | - Matthew T. Rich
- University of Connecticut, Stem Cell Institute, Institute for Systems Genomics, UConn Health, Department of Neuroscience, 263 Farmington Avenue, Farmington, Connecticut 06030-3401, United States
| | - Katerina D. Oikonomou
- University of Connecticut, Stem Cell Institute, Institute for Systems Genomics, UConn Health, Department of Neuroscience, 263 Farmington Avenue, Farmington, Connecticut 06030-3401, United States
| | - Mandakini B. Singh
- University of Connecticut, Stem Cell Institute, Institute for Systems Genomics, UConn Health, Department of Neuroscience, 263 Farmington Avenue, Farmington, Connecticut 06030-3401, United States
| | - Enas V. Sterjanaj
- University of Connecticut, Stem Cell Institute, Institute for Systems Genomics, UConn Health, Department of Neuroscience, 263 Farmington Avenue, Farmington, Connecticut 06030-3401, United States
| | - Srdjan D. Antic
- University of Connecticut, Stem Cell Institute, Institute for Systems Genomics, UConn Health, Department of Neuroscience, 263 Farmington Avenue, Farmington, Connecticut 06030-3401, United States
| |
Collapse
|
3
|
Canepari M, Zecevic D, Vogt KE, Ogden D, De Waard M. Combining calcium imaging with other optical techniques. Cold Spring Harb Protoc 2013; 2013:1125-31. [PMID: 24298025 DOI: 10.1101/pdb.top066167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ca(2+) imaging is a commonly used approach for measuring Ca(2+) signals at high spatial resolution. The method is often combined with electrode recordings to correlate electrical and chemical signals or to investigate Ca(2+) signals following an electrical stimulation. To obtain information on electrical activity at the same spatial resolution, Ca(2+) imaging must be combined with membrane potential imaging. Similarly, stimulation of subcellular compartments requires photostimulation. Thus, combining Ca(2+) imaging with an additional optical technique facilitates the study of a number of physiological questions. The aim of this article is to introduce some basic principles regarding the combination of Ca(2+) imaging with other optical techniques. We discuss the design of the optics, the design of experimental protocols, the optical characteristics of Ca(2+) indicators used in combination with an optical probe, and the affinity of the Ca(2+) indicator in relation to the type of measurement. This information will enable the reader to devise an optimal strategy for combined optical experiments.
Collapse
Affiliation(s)
- Marco Canepari
- Inserm U836, Team 3, BP 170, Grenoble cedex 09, F-38042, France
| | | | | | | | | |
Collapse
|