1
|
Bozhkov AI, Akzhyhitov RA, Bilovetska SG, Ivanov EG, Dobrianska NI, Bondar AY. The Effect of Retinol Acetate on Liver Fibrosis Depends on the Temporal Features of the Development of Pathology. J Clin Exp Hepatol 2024; 14:101338. [PMID: 38264572 PMCID: PMC10801314 DOI: 10.1016/j.jceh.2023.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Background The effect of vitamin A on the manifestations of liver fibrosis is controversial and establishing the causes of its multidirectional influence is an urgent problem. In the work, the functional characteristics of the liver with Cu-induced fibrosis were determined after the restoration of vitamin A to the control level at the F0/F1 stage. Methods In animals with liver fibrosis, classical indicators of physiology, functional activity of the liver, histological, and hematological characteristics were determined; the content of calcium and ROS was determined in bone marrow cells. Results It was shown that in the liver with Cu-induced fibrosis, the restoration of vitamin A content to control values after per os injections of a retinol acetate solution at a dose of 0.10 mg (300 IU)/100 g of body weight in the early stages of this pathology development (Fо/F1) was accompanied by: a decrease in the number of immunocompetent cells in the bloodstream to control values; normalization of the amount of calcium ions and ROS in bone marrow cells; restoration to the control level of activity of alkaline phosphatase; an increase in the number of binuclear hepatocytes; and restoration of the dynamics of body weight growth in experimental animals, even against the background of the ongoing action of the hepatotoxic factor. Conclusion We came to the conclusion that the multidirectional action of vitamin A, which occurs in liver fibrosis, depends not only on the concentration of vitamin A in the liver but also on temporal characteristics of cellular and metabolic links involved in the adaptive response formation. It was suggested that knowledge of the initial temporal metabolic characteristics and the amount of vitamin A in the liver, taking into account the stages of fibrosis development, can be an effective way to restore the altered homeostatic parameters of the body.
Collapse
Affiliation(s)
- Anatoly I. Bozhkov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Rustam A. Akzhyhitov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Svitlana G. Bilovetska
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Evgeny G. Ivanov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Nataliia I. Dobrianska
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Anastasiia Yu Bondar
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| |
Collapse
|
2
|
Xue YT, Li S, Jiang XY, Xin M, Li HH, Yu GL, He XX, Li CX. The reason and mechanism of propylene glycol alginate sodium sulfate (PSS) mediated allergic side effect. Int J Biol Macromol 2023; 241:124638. [PMID: 37119889 DOI: 10.1016/j.ijbiomac.2023.124638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Propylene glycol alginate sodium sulfate (PSS) is a heparinoid polysaccharide drug used in clinic for >30 years in China. But its allergy events happened from time to time and should not be ignored. Here, ammonium salt in PSS (PSS-NH4+), PSS fractions with high Mw (PSS-H-Mw) and low mannuronic acid (M) to guluronic acid (G) ratio (PSS-L-M/G) were found to induce allergic response by the structure-activity and impurity-activity relationships in vitro. Furthermore, we confirmed the reason and elucidated the mechanism accounted for allergic side effect of PSS in vivo. It was found that high IgE levels in PSS-NH4+ and PSS-H-Mw groups upregulate the cascade expression of Lyn-Syk-Akt or Erk and second messenger Ca2+, which accelerated mast cells (MCs) degranulation to release histamine, LTB4, TPS, and finally induced lung tissue injury. PSS-L-M/G caused mild allergic symptom because it only enhanced the expression of p-Lyn and histamine release. In brief, PSS-NH4+ and PSS-H-Mw were main reasons to result in allergic response. Our results suggested that it is very necessary to control the range of Mw and the content of impurities (< 1 % ammonium salt) of PSS to guarantee its safety and effectiveness in clinical treatment.
Collapse
Affiliation(s)
- Yi-Ting Xue
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China; Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shuang Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin-Yang Jiang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Meng Xin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hai-Hua Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guang-Li Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xiao-Xi He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chun-Xia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
3
|
Wang C, Chen J, Kuang Y, Cheng X, Deng M, Jiang Z, Hu X. A novel methylated cation channel TRPM4 inhibited colorectal cancer metastasis through Ca 2+/Calpain-mediated proteolysis of FAK and suppression of PI3K/Akt/mTOR signaling pathway. Int J Biol Sci 2022; 18:5575-5590. [PMID: 36147460 PMCID: PMC9461655 DOI: 10.7150/ijbs.70504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Colorectal cancer (CRC) is an aggressive malignancy with poor prognosis. It is imperative to elucidate the potential molecular mechanisms that regulate CRC cell aggressiveness. In present study, the transient receptor potential melastatin 4 (TRPM4), a calcium-activated nonselective cation channel, is downregulated in CRC as a novel methylated tumor suppressor gene (TSG). The reduced mRNA level of TRPM4 is due to the epigenetic methylation of its promoter CpG island (CGI). Moreover, ectopic expression of TRPM4 inhibited tumor growth and metastasis both in vitro and in vivo. Our experiments also demonstrate that TRPM4 restructures the CRC cytoskeleton and activates the Ca2+-mediated calpain pathway through enhancing calcium influx. The western blot analysis shows that the expression of focal adhesion kinase (FAK), a calpain-mediated proteolytic substrate, is markedly suppressed after ectopic overexpression of TRPM4, besides, Akt (also known as protein kinase B, PKB), phosphatidylinositol 3-kinase (PI3K) as well as its central target mTOR have significantly decreased expression accompanied by elevated E-cadherin and restrained matrix metalloproteinases (MMP2/MMP9) expression. The inhibition of protease calpain effectively relieves the retard of FAK/Akt signals and reverses the migration suppression of TRPM4. Taken together, TRPM4, identified as a novel methylated TSG, employs intracellular Ca2+ signals to activate calpain-mediated cleavage of FAK and impede CRC migration and invasion through modulating the PI3K/Akt/mTOR signaling cascade, providing the first evidence that TRPM4 is likely to be a significant biomarker and potential target for CRC therapy.
Collapse
Affiliation(s)
- Chan Wang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jiaxin Chen
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Yeye Kuang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xiaoqing Cheng
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Min Deng
- Department of Pathology, The First People's Hospital of Fuyang, Hangzhou 311400, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Xiaotong Hu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
4
|
Su Z, Wang F, Xie Y, Xie H, Mao G, Zhang H, Song A, Zhang Z. Reassessment of the role of CaCO 3 in n-butanol production from pretreated lignocellulosic biomass by Clostridium acetobutylicum. Sci Rep 2020; 10:17956. [PMID: 33087773 PMCID: PMC7578090 DOI: 10.1038/s41598-020-74899-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
In this study, the role of CaCO3 in n-butanol production was further investigated using corn straw hydrolysate (CSH) media by Clostridium acetobutylicum CICC 8016. CaCO3 addition stimulated sugars utilization and butanol production. Further study showed that calcium salts addition to CSH media led to the increase in Ca2+ concentration both intracellularly and extracellularly. Interestingly, without calcium salts addition, intracellular Ca2+ concentration in the synthetic P2 medium was much higher than that in the CSH medium despite the lower extracellular Ca2+ concentrations in the P2 medium. These results indicated that without additional calcium salts, Ca2+ uptake by C. acetobutylicum CICC 8016 in the CSH medium may be inhibited by non-sugar biomass degradation compounds, such as furans, phenolics and organic acids. Comparative proteomics analysis results showed that most enzymes involved in glycolysis, redox balance and amino acids metabolism were up-regulated with CaCO3 addition. This study provides further insights into the role of CaCO3 in n-butanol production using real biomass hydrolysate.
Collapse
Affiliation(s)
- Zengping Su
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Fengqin Wang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China.
| | - Yaohuan Xie
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Hui Xie
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Guotao Mao
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Hongsen Zhang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Andong Song
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China.
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
5
|
Abstract
Cardiovascular disease (CVD) is a public health concern, and the third cause of death worldwide. Several epidemiological studies and experimental approaches have demonstrated that consumption of polyphenol-enriched fruits and vegetables can promote cardioprotection. Thus, diet plays a key role in CVD development and/or prevention. Physiological β-adrenergic stimulation promotes beneficial inotropic effects by increasing heart rate, contractility and relaxation speed of cardiomyocytes. Nevertheless, chronic activation of β-adrenergic receptors can cause arrhythmias, oxidative stress and cell death. Herein the cardioprotective effect of human metabolites derived from polyphenols present in berries was assessed in cardiomyocytes, in response to chronic β-adrenergic stimulation, to disclose some of the underlying molecular mechanisms. Ventricular cardiomyocytes derived from neonate rats were treated with three human bioavailable phenolic metabolites found in circulating human plasma, following berries' ingestion (catechol-O-sulphate, pyrogallol-O-sulphate, and 1-methylpyrogallol-O-sulphate). The experimental conditions mimic the physiological concentrations and circulating time of these metabolites in the human plasma (2 h). Cardiomyocytes were then challenged with the β-adrenergic agonist isoproterenol (ISO) for 24 h. The presence of phenolic metabolites limited ISO-induced mitochondrial oxidative stress. Likewise, phenolic metabolites increased cell beating rate and synchronized cardiomyocyte beating population, following prolonged β-adrenergic receptor activation. Finally, phenolic metabolites also prevented ISO-increased activation of PKA-cAMP pathway, modulating Ca2+ signalling and rescuing cells from an arrhythmogenic Ca2+ transients' phenotype. Unexpected cardioprotective properties of the recently identified human-circulating berry-derived polyphenol metabolites were identified. These metabolites modulate cardiomyocyte beating and Ca2+ transients following β-adrenergic prolonged stimulation.
Collapse
|
6
|
Hydrogen Sulphide Treatment Increases Insulin Sensitivity and Improves Oxidant Metabolism through the CaMKKbeta-AMPK Pathway in PA-Induced IR C2C12 Cells. Sci Rep 2017; 7:13248. [PMID: 29038536 PMCID: PMC5643337 DOI: 10.1038/s41598-017-13251-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/11/2017] [Indexed: 11/12/2022] Open
Abstract
Studies have reported attenuation of insulin resistance (IR) by improving phosphorylation of the insulin signalling pathway. However, the upstream molecular signalling pathway is still elusive. In this study, Western blot was used to evaluate the phosphorylation level of the insulin signalling pathway and the AMPK pathway. 2-NBDG was used to evaluate glucose uptake. Ca2+ imaging was used to assess change of intracellular Ca2+ concentration. We found that NaHS enhanced the intracellular Ca2+ concentration and glucose uptake and activated the insulin signalling cascade in a palmitic acid (PA)-induced IR model in C2C12 cells. Furthermore, activation of the IRS1/PI3K/AKT pathway and glucose uptake were decreased when AMPK or CaMKKβ was inhibited. Our study also showed that the mitochondrial electron transport chain, ATP production, and intramitochondrial cAMP declined in the IR model but that this effect was reversed by NaHS, an effect that may be mediated by the Ca2+/CaMKK2/AMPK and PI3K/AKT pathways. Our data indicate that H2S improves activation of the insulin signalling cascade and glucose uptake via activation of the Ca2+/CaMKK2/AMPK pathway and mitochondrial metabolism in C2C12 cells. Furthermore, NaHS protects mitochondrial function and maintains normal ATP production by activating the cAMP system and the Ca2+/CaMKK2/AMPK and PI3K/ATK pathways.
Collapse
|
7
|
Liu S, Fei W, Shi Q, Li Q, Kuang Y, Wang C, He C, Hu X. CHAC2, downregulated in gastric and colorectal cancers, acted as a tumor suppressor inducing apoptosis and autophagy through unfolded protein response. Cell Death Dis 2017; 8:e3009. [PMID: 28837156 PMCID: PMC5596586 DOI: 10.1038/cddis.2017.405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 12/13/2022]
Abstract
Tumor suppressor genes play a key role in cancer pathogenesis. Through massive expression profiling we identified CHAC2 as a frequently downregulated gene in gastric and colorectal cancers. Immunohistochemistry and western blot revealed that CHAC2 was downregulated in most tumor tissues, and 3-year survival rate of patients with high CHAC2 expression was significantly higher than that of patients with low CHAC2 expression (P<0.001 and P=0.001, respectively). The data of univariate analysis and multivariate analysis suggested that CHAC2 could serve as an independent prognostic marker. Our results showed for the first time that CHAC2 was degraded by the ubiquitin-proteasome pathway and CHAC2 expression inhibited tumor cell growth, proliferation, migration in vitro and in vivo. Mechanistic study showed that CHAC2 induced mitochondrial apoptosis and autophagy through unfolded protein response. So in gastric and colorectal cancer CHAC2 acted as a tumor suppressor and might have therapeutic implication for patients.
Collapse
Affiliation(s)
- Shuiping Liu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Weiqiang Fei
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinglan Shi
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qiang Li
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yeye Kuang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chan Wang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chao He
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Sipido KR, Macquaide N, Bito V. A systematic approach for assessing Ca²⁺ handling in cardiac myocytes. Cold Spring Harb Protoc 2015; 2015:431-3. [PMID: 25934941 DOI: 10.1101/pdb.top066142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In cardiac myocytes, Ca(2+) release from the sarcoplasmic reticulum (SR) Ca(2+) store through the opening of ryanodine receptors (RyRs) is the major source of Ca(2+) for activation of myofilaments and contraction. Over the past 20 years, tools have become available to study this release process in detail, allowing new insights into the regulation of SR Ca(2+) release and RyR function. To assess these processes, we recommend and here review a systematic approach that evaluates the essential transport mechanisms and Ca(2+) fluxes in isolated single cardiac myocytes by using fluorescent Ca(2+) indicators and whole-cell recording of membrane voltage and ionic currents under voltage clamp. The approach includes an assessment of the L-type Ca(2+) current as a trigger for opening of RyRs and release of SR Ca(2+), of the SR Ca(2+) content, of intrinsic properties of RyRs, and of Ca(2+)-removal systems.
Collapse
Affiliation(s)
- Karin R Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Niall Macquaide
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Virginie Bito
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| |
Collapse
|
9
|
Macquaide N, Bito V, Sipido KR. Measuring Ca²⁺ sparks in cardiac myocytes. Cold Spring Harb Protoc 2015; 2015:490-7. [PMID: 25934930 DOI: 10.1101/pdb.prot076984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This protocol describes the measurement of Ca(2+) sparks in intact myocytes by using a Ca(2+)-sensitive dye and imaging using laser scanning confocal microscopy. It takes advantage of spontaneous Ca(2+)-release events-sparks-using them as a measure of the activity of ryanodine receptors (RyRs). Two methodologies are described: One requires that cardiomyocytes be stimulated, preferably under voltage clamp by depolarizing pulses, until steady-state is reached, and then stimulation is stopped and Ca(2+) sparks are recorded. The second requires that cells be permeabilized and bathed in a solution to load the cell with Ca(2+) sufficient to elicit Ca(2+) sparks, but not Ca(2+) waves. These are then analyzed offline to quantify spark frequency and morphology. The advantages and disadvantages of each approach are discussed.
Collapse
Affiliation(s)
- Niall Macquaide
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Virginie Bito
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Karin R Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| |
Collapse
|
10
|
Bito V, Sipido KR, Macquaide N. Assessing Ca²⁺-removal pathways in cardiac myocytes. Cold Spring Harb Protoc 2015; 2015:498-503. [PMID: 25934931 DOI: 10.1101/pdb.prot076992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The decline of an intracellular calcium ([Ca(2+)]i) transient during a single excitation-contraction coupling (ECC) cycle reflects the combined activity of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) pump and the sarcolemmal Na(+)-Ca(2+) exchanger (NCX), along with minor contributions of the plasma membrane Ca(2+)-ATPase and mitochondrial Ca(2+) uniporter, in removing Ca(2+) from the cytosol. A traditional approach for assessing the individual components is to fit the decline of the [Ca(2+)]i transient evoked during electrical stimulation with an exponential. This reflects mostly the SERCA-dependent rate of uptake, which can be properly deduced after correcting for a component of NCX removal. As NCX function is an important determinant of the membrane potential as well as the Ca(2+) balance, we present here several detailed protocols for assessing NCX function. As the reversal potential and the amplitudes of the current are highly dependent on the prevailing concentrations of Na(+) and Ca(2+), we show how NCX function can be assessed under highly controlled conditions, with Ca(2+) and Na(+) clamped, as well as under more physiological conditions, with freely changing Ca(2+) and Na(+).
Collapse
Affiliation(s)
- Virginie Bito
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Karin R Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Niall Macquaide
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| |
Collapse
|
11
|
Macquaide N, Bito V, Sipido KR. Measuring sarcoplasmic reticulum Ca2+ content, fractional release, and Ca2+ buffering in cardiac myocytes. Cold Spring Harb Protoc 2015; 2015:403-7. [PMID: 25834259 DOI: 10.1101/pdb.prot076976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here, we describe a protocol for the reliable measurement of the amount of Ca(2+) in the sarcoplasmic reticulum (SR) Ca(2+) store of cardiac myocytes. The whole-cell patch-clamp method is used to provide controlled loading of the SR during conditioning depolarizing pulses, followed by rapid application of a high dose of caffeine to release all SR Ca(2+) and to prevent Ca(2+) reuptake by the SR. Simultaneous measurement of membrane currents records Ca(2+) extruded through the Na(+)-Ca(2+) exchanger. The integral of the caffeine-induced Na(+)-Ca(2+) exchange current is then used as a measure of the SR Ca(2+). Derived measurements include the Ca(2+) buffering capacity and measurement of fractional release as an indicator of coupling gain. Caveats, advantages, and disadvantages of this method and alternative methods are discussed.
Collapse
Affiliation(s)
- Niall Macquaide
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Virginie Bito
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Karin R Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| |
Collapse
|
12
|
Bito V, Macquaide N, Sipido KR. Characterizing the trigger for sarcoplasmic reticulum Ca2+ release in cardiac myocytes. Cold Spring Harb Protoc 2015; 2015:398-402. [PMID: 25834258 DOI: 10.1101/pdb.prot076968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here, we describe a method for characterizing the L-type Ca(2+) current, ICaL, which is a major trigger for Ca(2+) release from the sarcoplasmic reticulum (SR). The protocol includes measuring ICaL amplitude and voltage dependence and the elicited SR Ca(2+) release. The procedure for measuring ICaL activity is performed using solutions (internal and external) and voltage control such that other ionic currents are eliminated. The resultant relationship between the Ca(2+) current and the associated internal [Ca(2+)]i transient is a first approach for evaluating coupling gain. We discuss which parameters are most appropriate for this analysis and how an evaluation of gain needs to be further explored by measuring the SR Ca(2+) content.
Collapse
Affiliation(s)
- Virginie Bito
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Niall Macquaide
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Karin R Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| |
Collapse
|