1
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Kumar AS, Kamalasanan K. Drug delivery to optimize angiogenesis imbalance in keloid: A review. J Control Release 2020; 329:1066-1076. [PMID: 33091533 DOI: 10.1016/j.jconrel.2020.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The wound healing process involves three continuous stages. Where, any imbalance can lead to the formation of unwanted keloids, hypertrophic scar, or tumors. Keloids are any unpleasant, non-compliant comorbidity affecting a major section of people around the globe who acquire it either genetically or by pathological means as a result of a skin injury. Angiogenesis is unavoidable in the healing process after an injury or disruption of skin to promote tissue regeneration. Uncontrolled angiogenesis during the healing process can initiate the unwanted response in the wound that facilitate keloid. Angiogenic therapy is adapted to accelerate healing after an injury. Else ways, there exists a risk of keloid formation due to excessive angiogenesis during the wound healing process. There are numerous strategies to treat keloid. Anti-angiogenic factors are provided to patients post-surgery to prevent the keloid formation; however, they come into the picture after the formation of keloid. The available strategies to treat keloids are steroidal injections, surgical excision of the keloid, radiotherapy, pressure therapy, the use of cryosurgery, and many more. The available treatments are not promising in reducing the recurrent rate of keloids as there are chances of high re-occurrences with similar/larger lesions on the removed keloid site. In this review, we are discussing the importance of controlled angiogenesis with the help of controlled drug delivery strategies enabling the wound healing process without the induction of keloid.
Collapse
Affiliation(s)
- Aishwari S Kumar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, AIMS Ponekkara PO, Kochi, Kerala, 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, AIMS Ponekkara PO, Kochi, Kerala, 682041, India.
| |
Collapse
|
3
|
Fiordelisi MF, Cavaliere C, Auletta L, Basso L, Salvatore M. Magnetic Resonance Imaging for Translational Research in Oncology. J Clin Med 2019; 8:jcm8111883. [PMID: 31698697 PMCID: PMC6912299 DOI: 10.3390/jcm8111883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The translation of results from the preclinical to the clinical setting is often anything other than straightforward. Indeed, ideas and even very intriguing results obtained at all levels of preclinical research, i.e., in vitro, on animal models, or even in clinical trials, often require much effort to validate, and sometimes, even useful data are lost or are demonstrated to be inapplicable in the clinic. In vivo, small-animal, preclinical imaging uses almost the same technologies in terms of hardware and software settings as for human patients, and hence, might result in a more rapid translation. In this perspective, magnetic resonance imaging might be the most translatable technique, since only in rare cases does it require the use of contrast agents, and when not, sequences developed in the lab can be readily applied to patients, thanks to their non-invasiveness. The wide range of sequences can give much useful information on the anatomy and pathophysiology of oncologic lesions in different body districts. This review aims to underline the versatility of this imaging technique and its various approaches, reporting the latest preclinical studies on thyroid, breast, and prostate cancers, both on small laboratory animals and on human patients, according to our previous and ongoing research lines.
Collapse
|
4
|
Kang MJ, Kim JE, Park JW, Choi HJ, Bae SJ, Kim KS, Jung YS, Cho JY, Hwang DY, Song HK. Comparison of responsiveness to cancer development and anti-cancer drug in three different C57BL/6N stocks. Lab Anim Res 2019; 35:17. [PMID: 32257905 PMCID: PMC7081605 DOI: 10.1186/s42826-019-0015-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/06/2019] [Indexed: 03/21/2023] Open
Abstract
In our efforts to understand the systemic features of tumors, the importance of animal models is increasing due to the recent growth in the development of immunotherapy and targeted therapies. This has resulted in increased attention towards tumor animal models using C57BL/6N, which are mainly used in immunological studies. In this study, the C57BL/6NKorl stock and two other commercial stocks (C57BL/6NA and C57BL/N6B) are evaluated by comparing the occurrence of tumors using the syngeneic model; furthermore, we compare the response to anti-cancer drugs in the syngeneic model by evaluating survival, growth of tumors, proliferation and molecular biology analysis. In the syngeneic model using LLC (Lewis lung carcinoma) cells, the survival of mice and growth of the tumor showed a better response in the C57BL/6NKorl stock, and was dependent on the cell concentration of the dosing tumor, as compared to the other C57BL/6N stocks. However, the Ki-67 staining showed only little difference in cell proliferation within the tumor tissue each mouse stocks. Comparing the sensitivity to anti-cancer drug by examining changes in growth, volume and weight revealed that cisplatin treatment for tumor-bearing C57BL/6NKorl was more dependent on concentration. The Ki-67 staining, however, showed no difference among the C57BL/6N stocks after cisplatin treatment. The expressions of p27 and p53 tumor suppressor proteins, caspase-3 and Bax showed dose-dependent increase after exposure to cisplatin, whereas the expression of Bcl-2 was reduced in a dose-dependent manner. Furthermore, the expressions of MMP-2 and VEGF involved in metastasis, as well as inflammatory genes IL-1β, IL-6 and IL-10, showed dose-dependent decrease in tumor tissue after cisplatin exposure. Differences observed among the C57BL/6N stocks were not significant. Taken together, our studies reveal that C57BL/6NKorl has the potential of being a useful biological resource established in Korea, as it does not differ from the two commercially available C57BL/6N stocks when considering response to tumor generation and sensitivity to anti-cancer drugs using the syngeneic tumor model.
Collapse
Affiliation(s)
- Mi Ju Kang
- 1Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 627-706, Miryang, 50463 Korea
| | - Ji Eun Kim
- 1Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 627-706, Miryang, 50463 Korea
| | - Ji Won Park
- 1Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 627-706, Miryang, 50463 Korea
| | - Hyeon Jun Choi
- 1Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 627-706, Miryang, 50463 Korea
| | - Su Ji Bae
- 1Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 627-706, Miryang, 50463 Korea
| | - Kil Soo Kim
- 2College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Young-Suk Jung
- 3College of Pharmacy, Pusan National University, Busan, Korea
| | - Joon-Yong Cho
- 4Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Korea
| | - Dae Youn Hwang
- 1Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 627-706, Miryang, 50463 Korea
| | - Hyun Keun Song
- Central Research Institute, Kine siences Co., F1, Milovany, Goryeodae-ro 28, Seongbuk-gu, Seoul, Korea
| |
Collapse
|
5
|
Xu C, Wu S, Schook LB, Schachtschneider KM. Translating Human Cancer Sequences Into Personalized Porcine Cancer Models. Front Oncol 2019; 9:105. [PMID: 30873383 PMCID: PMC6401626 DOI: 10.3389/fonc.2019.00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
The global incidence of cancer is rapidly rising, and despite an improved understanding of cancer molecular biology, immune landscapes, and advancements in cytotoxic, biologic, and immunologic anti-cancer therapeutics, cancer remains a leading cause of death worldwide. Cancer is caused by the accumulation of a series of gene mutations called driver mutations that confer selective growth advantages to tumor cells. As cancer therapies move toward personalized medicine, predictive modeling of the role driver mutations play in tumorigenesis and therapeutic susceptibility will become essential. The development of next-generation sequencing technology has made the evaluation of mutated genes possible in clinical practice, allowing for identification of driver mutations underlying cancer development in individual patients. This, combined with recent advances in gene editing technologies such as CRISPR-Cas9 enables development of personalized tumor models for prediction of treatment responses for mutational profiles observed clinically. Pigs represent an ideal animal model for development of personalized tumor models due to their similar size, anatomy, physiology, metabolism, immunity, and genetics compared to humans. Such models would support new initiatives in precision medicine, provide approaches to create disease site tumor models with designated spatial and temporal clinical outcomes, and create standardized tumor models analogous to human tumors to enable therapeutic studies. In this review, we discuss the process of utilizing genomic sequencing approaches, gene editing technologies, and transgenic porcine cancer models to develop clinically relevant, personalized large animal cancer models for use in co-clinical trials, ultimately improving treatment stratification and translation of novel therapeutic approaches to clinical practice.
Collapse
Affiliation(s)
- Chunlong Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lawrence B Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Roberts RM, Yuan Y, Genovese N, Ezashi T. Livestock models for exploiting the promise of pluripotent stem cells. ILAR J 2016; 56:74-82. [PMID: 25991700 DOI: 10.1093/ilar/ilv005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Livestock species are widely used as biomedical models. Pigs, in particular, are beginning to have a significant role in regenerative medicine for testing the applicability, success, and safety of grafts derived from induced pluripotent stem cells. Animal testing must always be performed before any clinical trials are performed in humans, and pigs may sometimes be the species of choice because of their physiological and anatomical similarities to humans. Induced pluripotent stem cells (iPSC) have been generated with some success from livestock species by a variety of reprogramming procedures, but authenticated embryonic stem cells (ESC) have not. There are now several studies in which porcine iPSC have been tested for their ability to provide functional grafts in pigs. Pigs have also served as recipients for grafts derived from human iPSC. There have also been recent advances in creating pigs with severe combined immunodeficiency (SCID). Like SCID mice, these pigs are expected to be graft tolerant. Additionally, chimeric, partially humanized pigs could be sources of human organs. Another potential application of pluripotent stem cells from livestock is for the purpose of differentiating the cells into skeletal muscle, which, in turn, could be used either to produce cultured meat or to engraft into damaged muscle. None of these technologies has advanced to a stage that they have become mainstream, however. Despite the value of livestock models in regenerative medicine, only a limited number of institutions are able to use these animals.
Collapse
Affiliation(s)
- R Michael Roberts
- R. Michael Roberts, DPhil, is a Curators' Professor in the Division of Animal Sciences and Department of Biochemistry at the University of Missouri. Ye Yuan, PhD, is a research scientist; Nicholas Genovese, PhD, is a postdoctoral fellow; and Toshihiko Ezashi, DVM, PhD, is a research associate professor in the Division of Animal Sciences at the University of Missouri
| | - Ye Yuan
- R. Michael Roberts, DPhil, is a Curators' Professor in the Division of Animal Sciences and Department of Biochemistry at the University of Missouri. Ye Yuan, PhD, is a research scientist; Nicholas Genovese, PhD, is a postdoctoral fellow; and Toshihiko Ezashi, DVM, PhD, is a research associate professor in the Division of Animal Sciences at the University of Missouri
| | - Nicholas Genovese
- R. Michael Roberts, DPhil, is a Curators' Professor in the Division of Animal Sciences and Department of Biochemistry at the University of Missouri. Ye Yuan, PhD, is a research scientist; Nicholas Genovese, PhD, is a postdoctoral fellow; and Toshihiko Ezashi, DVM, PhD, is a research associate professor in the Division of Animal Sciences at the University of Missouri
| | - Toshihiko Ezashi
- R. Michael Roberts, DPhil, is a Curators' Professor in the Division of Animal Sciences and Department of Biochemistry at the University of Missouri. Ye Yuan, PhD, is a research scientist; Nicholas Genovese, PhD, is a postdoctoral fellow; and Toshihiko Ezashi, DVM, PhD, is a research associate professor in the Division of Animal Sciences at the University of Missouri
| |
Collapse
|
7
|
Yee NS, Ignatenko N, Finnberg N, Lee N, Stairs D. ANIMAL MODELS OF CANCER BIOLOGY. CANCER GROWTH AND METASTASIS 2015; 8:115-8. [PMID: 26688665 PMCID: PMC4676433 DOI: 10.4137/cgm.s37907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nelson S Yee
- Assistant Professor of Medicine in Hematology-Oncology, Pennsylvania State University, Hershey, PA, USA
| | - Natalia Ignatenko
- Associate Professor of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Niklas Finnberg
- Assistant Research Professor, Fox Chase Cancer Institute, Philadelphia, PA, USA
| | - Nikki Lee
- Assistant Professor, The University of Hong Kong, Hong Kong
| | - Douglas Stairs
- Assistant Professor of Pathology, Pharmacology, and Biochemistry & Molecular Biology, Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
8
|
Redel BK, Prather RS. Meganucleases Revolutionize the Production of Genetically Engineered Pigs for the Study of Human Diseases. Toxicol Pathol 2015; 44:428-33. [PMID: 26516165 DOI: 10.1177/0192623315613160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models of human diseases are critically necessary for developing an in-depth knowledge of disease development and progression. In addition, animal models are vital to the development of potential treatments or even cures for human diseases. Pigs are exceptional models as their size, physiology, and genetics are closer to that of humans than rodents. In this review, we discuss the use of pigs in human translational research and the evolving technology that has increased the efficiency of genetically engineering pigs. With the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system technology, the cost and time it takes to genetically engineer pigs has markedly decreased. We will also discuss the use of another meganuclease, the transcription activator-like effector nucleases , to produce pigs with severe combined immunodeficiency by developing targeted modifications of the recombination activating gene 2 (RAG2).RAG2mutant pigs may become excellent animals to facilitate the development of xenotransplantation, regenerative medicine, and tumor biology. The use of pig biomedical models is vital for furthering the knowledge of, and for treating human, diseases.
Collapse
Affiliation(s)
- Bethany K Redel
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Randall S Prather
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
9
|
Horas K, Zheng Y, Zhou H, Seibel MJ. Animal Models for Breast Cancer Metastasis to Bone: Opportunities and Limitations. Cancer Invest 2015; 33:459-68. [DOI: 10.3109/07357907.2015.1065500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
|
11
|
Vourganti S, Donaldson J, Johnson L, Turkbey B, Bratslavsky G, Kotula L. Defining the radiobiology of prostate cancer progression: An important question in translational prostate cancer research. Exp Biol Med (Maywood) 2014; 239:805-812. [PMID: 24879423 DOI: 10.1177/1535370214536669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is one of the most common malignancies affecting men worldwide. High mortality rates from advanced and metastatic prostate cancer in the United States are contrasted by a relatively indolent course in the majority of cases. This gives hope for finding methods that could direct personalized diagnostic, preventative, and treatment approaches to patients with prostate cancer. Recent advances in multiparametric magnetic resonance imaging (MP-MRI) offer a noninvasive diagnostic intervention which allows correlation of prostate tumor image characteristics with underlying biologic evidence of tumor progression. The power of MP-MRI includes examination of both local invasion and nodal disease and might overcome the challenges of analyzing the multifocal nature of prostate cancer. Future directions include a careful analysis of the genomic signature of individual prostatic lesions utilizing image-guided biopsies. This review examines the diagnostic potential of MRI in prostate cancer.
Collapse
Affiliation(s)
- Srinivas Vourganti
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey Donaldson
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Linda Johnson
- Molecular Imaging Program, Urologic Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baris Turkbey
- Molecular Imaging Program, Urologic Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|