1
|
Murphy KC, Ruscetti M. Advances in Making Cancer Mouse Models More Accessible and Informative through Non-Germline Genetic Engineering. Cold Spring Harb Perspect Med 2024; 14:a041348. [PMID: 37277206 PMCID: PMC10982712 DOI: 10.1101/cshperspect.a041348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genetically engineered mouse models (GEMMs) allow for modeling of spontaneous tumorigenesis within its native microenvironment in mice and have provided invaluable insights into mechanisms of tumorigenesis and therapeutic strategies to treat human disease. However, as their generation requires germline manipulation and extensive animal breeding that is time-, labor-, and cost-intensive, traditional GEMMs are not accessible to most researchers, and fail to model the full breadth of cancer-associated genetic alterations and therapeutic targets. Recent advances in genome-editing technologies and their implementation in somatic tissues of mice have ushered in a new class of mouse models: non-germline GEMMs (nGEMMs). nGEMM approaches can be leveraged to generate somatic tumors de novo harboring virtually any individual or group of genetic alterations found in human cancer in a mouse through simple procedures that do not require breeding, greatly increasing the accessibility and speed and scale on which GEMMs can be produced. Here we describe the technologies and delivery systems used to create nGEMMs and highlight new biological insights derived from these models that have rapidly informed functional cancer genomics, precision medicine, and immune oncology.
Collapse
Affiliation(s)
- Katherine C Murphy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA;
- Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
- Cancer Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
2
|
Hatanaka EA, Breunig JJ. In vitro and in vivo modeling systems of supratentorial ependymomas. Front Oncol 2024; 14:1360358. [PMID: 38469231 PMCID: PMC10925685 DOI: 10.3389/fonc.2024.1360358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Ependymomas are rare brain tumors that can occur in both children and adults. Subdivided by the tumors' initial location, ependymomas develop in the central nervous system in the supratentorial or infratentorial/posterior fossa region, or the spinal cord. Supratentorial ependymomas (ST-EPNs) are predominantly characterized by common driver gene fusions such as ZFTA and YAP1 fusions. Some variants of ST-EPNs carry a high overall survival rate. In poorly responding ST-EPN variants, high levels of inter- and intratumoral heterogeneity, limited therapeutic strategies, and tumor recurrence are among the reasons for poor patient outcomes with other ST-EPN subtypes. Thus, modeling these molecular profiles is key in further studying tumorigenesis. Due to the scarcity of patient samples, the development of preclinical in vitro and in vivo models that recapitulate patient tumors is imperative when testing therapeutic approaches for this rare cancer. In this review, we will survey ST-EPN modeling systems, addressing the strengths and limitations, application for therapeutic targeting, and current literature findings.
Collapse
Affiliation(s)
- Emily A. Hatanaka
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Miller CR, Hjelmeland AB. Breaking the feed forward inflammatory cytokine loop in the tumor microenvironment of PDGFB-driven glioblastomas. J Clin Invest 2023; 133:e175127. [PMID: 37966120 PMCID: PMC10645375 DOI: 10.1172/jci175127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Glioblastoma (GBM) tumor-associated macrophages (TAMs) provide a major immune cell population contributing to growth and immunosuppression via the production of proinflammatory factors, including IL-1. In this issue of the JCI, Chen, Giotti, and colleagues investigated loss of ll1b in the immune tumor microenvironment (TME) in GBM models driven by PDGFB expression and Nf1 knockdown. Survival was only improved in PDGFB-driven GBM models, suggesting that tumor cell genotype influenced the immune TME. IL-1β in the TME increased PDGFB-driven GBM growth by increasing tumor-derived NF-κB, expression of monocyte chemoattractants, and increased infiltration of bone marrow-derived myeloid cells (BMDMs). In contrast, no requirement for IL-1β was evident in Nf1-silenced tumors due to high basal levels of NF-κB and monocyte chemoattractants and increased infiltration of BMDM and TAMs. Notably, treatment of mice bearing PDGFB-driven GBM with anti-IL-1β or an IL1R1 antagonist extended survival. These findings suggest that effective clinical immunotherapy may require differential targeting strategies.
Collapse
Affiliation(s)
- C. Ryan Miller
- Department of Pathology, Division of Neuropathology and O’Neal Comprehensive Cancer Center, and
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Andersen MS, Kofoed MS, Paludan-Müller AS, Pedersen CB, Mathiesen T, Mawrin C, Wirenfeldt M, Kristensen BW, Olsen BB, Halle B, Poulsen FR. Meningioma animal models: a systematic review and meta-analysis. J Transl Med 2023; 21:764. [PMID: 37898750 PMCID: PMC10612271 DOI: 10.1186/s12967-023-04620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Animal models are widely used to study pathological processes and drug (side) effects in a controlled environment. There is a wide variety of methods available for establishing animal models depending on the research question. Commonly used methods in tumor research include xenografting cells (established/commercially available or primary patient-derived) or whole tumor pieces either orthotopically or heterotopically and the more recent genetically engineered models-each type with their own advantages and disadvantages. The current systematic review aimed to investigate the meningioma model types used, perform a meta-analysis on tumor take rate (TTR), and perform critical appraisal of the included studies. The study also aimed to assess reproducibility, reliability, means of validation and verification of models, alongside pros and cons and uses of the model types. METHODS We searched Medline, Embase, and Web of Science for all in vivo meningioma models. The primary outcome was tumor take rate. Meta-analysis was performed on tumor take rate followed by subgroup analyses on the number of cells and duration of incubation. The validity of the tumor models was assessed qualitatively. We performed critical appraisal of the methodological quality and quality of reporting for all included studies. RESULTS We included 114 unique records (78 using established cell line models (ECLM), 21 using primary patient-derived tumor models (PTM), 10 using genetically engineered models (GEM), and 11 using uncategorized models). TTRs for ECLM were 94% (95% CI 92-96) for orthotopic and 95% (93-96) for heterotopic. PTM showed lower TTRs [orthotopic 53% (33-72) and heterotopic 82% (73-89)] and finally GEM revealed a TTR of 34% (26-43). CONCLUSION This systematic review shows high consistent TTRs in established cell line models and varying TTRs in primary patient-derived models and genetically engineered models. However, we identified several issues regarding the quality of reporting and the methodological approach that reduce the validity, transparency, and reproducibility of studies and suggest a high risk of publication bias. Finally, each tumor model type has specific roles in research based on their advantages (and disadvantages). SYSTEMATIC REVIEW REGISTRATION PROSPERO-ID CRD42022308833.
Collapse
Affiliation(s)
- Mikkel Schou Andersen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark.
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mikkel Seremet Kofoed
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Asger Sand Paludan-Müller
- Nordic Cochrane Centre, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
- Centre for Evidence-Based Medicine Odense (CEBMO) and NHTA: Market Access & Health Economics Consultancy, Copenhagen, Denmark
| | - Christian Bonde Pedersen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Christian Mawrin
- Department of Neuropathology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Martin Wirenfeldt
- Department of Pathology and Molecular Biology, Hospital South West Jutland, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern, Odense, Denmark
| | | | - Birgitte Brinkmann Olsen
- Clinical Physiology and Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Bo Halle
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Ceresa D, Alessandrini F, Lucchini S, Marubbi D, Piaggio F, Mena Vera JM, Ceccherini I, Reverberi D, Appolloni I, Malatesta P. Early clonal extinction in glioblastoma progression revealed by genetic barcoding. Cancer Cell 2023; 41:1466-1479.e9. [PMID: 37541243 DOI: 10.1016/j.ccell.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
Glioblastoma progression in its early stages remains poorly understood. Here, we transfer PDGFB and genetic barcodes in mouse brain to initiate gliomagenesis and enable direct tracing of glioblastoma evolution from its earliest possible stage. Unexpectedly, we observe a high incidence of clonal extinction events and progressive divergence in clonal sizes, even after the acquisition of malignant phenotype. Computational modeling suggests these dynamics result from clonal-based cell-cell competition. Through bulk and single-cell transcriptome analyses, coupled with lineage tracing, we reveal that Myc transcriptional targets have the strongest correlation with clonal size imbalances. Moreover, we show that the downregulation of Myc expression is sufficient to drive competitive dynamics in intracranially transplanted gliomas. Our findings provide insights into glioblastoma evolution that are inaccessible using conventional retrospective approaches, highlighting the potential of combining clonal tracing and transcriptomic analyses in this field.
Collapse
Affiliation(s)
- Davide Ceresa
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Francesco Alessandrini
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Sara Lucchini
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Daniela Marubbi
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | | | - Jorge Miguel Mena Vera
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | - Irene Appolloni
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Paolo Malatesta
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.
| |
Collapse
|
6
|
Ren AL, Wu JY, Lee SY, Lim M. Translational Models in Glioma Immunotherapy Research. Curr Oncol 2023; 30:5704-5718. [PMID: 37366911 DOI: 10.3390/curroncol30060428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Immunotherapy is a promising therapeutic domain for the treatment of gliomas. However, clinical trials of various immunotherapeutic modalities have not yielded significant improvements in patient survival. Preclinical models for glioma research should faithfully represent clinically observed features regarding glioma behavior, mutational load, tumor interactions with stromal cells, and immunosuppressive mechanisms. In this review, we dive into the common preclinical models used in glioma immunology, discuss their advantages and disadvantages, and highlight examples of their utilization in translational research.
Collapse
Affiliation(s)
- Alexander L Ren
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Janet Y Wu
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Si Yeon Lee
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94304, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94304, USA
| |
Collapse
|
7
|
Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021; 11:631037. [PMID: 34168976 PMCID: PMC8217836 DOI: 10.3389/fonc.2021.631037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology graduate program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa E. Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Ene CI, Kreuser SA, Jung M, Zhang H, Arora S, White Moyes K, Szulzewsky F, Barber J, Cimino PJ, Wirsching HG, Patel A, Kong P, Woodiwiss TR, Durfy SJ, Houghton AM, Pierce RH, Parney IF, Crane CA, Holland EC. Anti-PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro Oncol 2021; 22:639-651. [PMID: 31793634 DOI: 10.1093/neuonc/noz226] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most glioblastomas recur near prior radiation treatment sites. Future clinical success will require achieving and optimizing an "abscopal effect," whereby unirradiated neoplastic cells outside treatment sites are recognized and attacked by the immune system. Radiation combined with anti-programmed cell death ligand 1 (PD-L1) demonstrated modest efficacy in phase II human glioblastoma clinical trials, but the mechanism and relevance of the abscopal effect during this response remain unknown. METHODS We modified an immune-competent, genetically driven mouse glioma model (forced platelet derived growth factor [PDGF] expression + phosphatase and tensin homolog loss) where a portion of the tumor burden is irradiated (PDGF) and another unirradiated luciferase-expressing tumor (PDGF + luciferase) is used as a readout of the abscopal effect following systemic anti-PD-L1 immunotherapy. We assessed relevance of tumor neoepitope during the abscopal response by inducing expression of epidermal growth factor receptor variant III (EGFRvIII) (PDGF + EGFRvIII). Statistical tests were two-sided. RESULTS Following radiation of one lesion, anti-PD-L1 immunotherapy enhanced the abscopal response to the unirradiated lesion. In PDGF-driven gliomas without tumor neoepitope (PDGF + luciferase, n = 8), the abscopal response occurred via anti-PD-L1 driven, extracellular signal-regulated kinase-mediated, bone marrow-derived macrophage phagocytosis of adjacent unirradiated tumor cells, with modest survival implications (median survival 41 days vs radiation alone 37.5 days, P = 0.03). In PDGF-driven gliomas with tumor neoepitope (PDGF + EGFRvIII, n = 8), anti-PD-L1 enhanced abscopal response was associated with macrophage and T-cell infiltration and increased survival benefit (median survival 36 days vs radiation alone 28 days, P = 0.001). CONCLUSION Our results indicate that anti-PD-L1 immunotherapy enhances a radiation- induced abscopal response via canonical T-cell activation and direct macrophage activation in glioblastoma.
Collapse
Affiliation(s)
- Chibawanye I Ene
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shannon A Kreuser
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Miyeon Jung
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Huajia Zhang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kara White Moyes
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jason Barber
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Patrick J Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, Washington
| | - Hans-Georg Wirsching
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Anoop Patel
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paul Kong
- Experimental Histopathology, Fred Hutchinson Cancer Research Center, Seattle Washington
| | - Timothy R Woodiwiss
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sharon J Durfy
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - A McGarry Houghton
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Robert H Pierce
- Experimental Histopathology, Fred Hutchinson Cancer Research Center, Seattle Washington
| | - Ian F Parney
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Courtney A Crane
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| | - Eric C Holland
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Liu C, Wu P, Zhang A, Mao X. Advances in Rodent Models for Breast Cancer Formation, Progression, and Therapeutic Testing. Front Oncol 2021; 11:593337. [PMID: 33842308 PMCID: PMC8032937 DOI: 10.3389/fonc.2021.593337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is a highly complicated disease. Advancement in the treatment and prevention of breast cancer lies in elucidation of the mechanism of carcinogenesis and progression. Rodent models of breast cancer have developed into premier tools for investigating the mechanisms and genetic pathways in breast cancer progression and metastasis and for developing and evaluating clinical therapeutics. Every rodent model has advantages and disadvantages, and the selection of appropriate rodent models with which to investigate breast cancer is a key decision in research. Design of a suitable rodent model for a specific research purpose is based on the integration of the advantages and disadvantages of different models. Our purpose in writing this review is to elaborate on various rodent models for breast cancer formation, progression, and therapeutic testing.
Collapse
Affiliation(s)
- Chong Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pei Wu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ailin Zhang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
The avian retroviral receptor Tva mediates the uptake of transcobalamin bound vitamin B12 (cobalamin). J Virol 2021; 95:JVI.02136-20. [PMID: 33504597 PMCID: PMC8103681 DOI: 10.1128/jvi.02136-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Avian sarcoma and leukosis viruses (ASLVs) are important chicken pathogens. Some of the virus subgroups, including ASLV-A and K, utilize the Tva receptor for cell entrance. Though Tva was identified three decades ago, its physiological function remains unknown. Previously, we have noted an intriguing resemblance and orthology between the chicken gene coding for Tva and the human gene coding for CD320, a receptor involved in cellular uptake of transcobalamin (TC) in complex with vitamin B12/cobalamin (Cbl).Here we show that both the transmembrane and the glycosylphosphatidylinositol (GPI)-anchored form of Tva in the chicken cell line DF-1 promotes the uptake of Cbl with help of expressed and purified chicken TC. The uptake of TC-Cbl complex was monitored using an isotope- or fluorophore-labeled Cbl. We show that (i) TC-Cbl is internalized in chicken cells; and (ii) the uptake is lower in the Tva-knockout cells and higher in Tva-overexpressing cells when compared with wild type chicken cells. The relation between physiological function of Tva and its role in infection was elaborated by showing that infection with ASLV subgroups (targeting Tva) impairs the uptake of TC-Cbl, while this is not the case for cells infected with ASLV-B (not recognized by Tva). In addition, exposure of the cells to a high concentration of TC-Cbl alleviates the infection with Tva-dependent ASLV.IMPORTANCE: We demonstrate that the ASLV receptor Tva participates in the physiological uptake of TC-Cbl, because the viral infection suppresses the uptake of Cbl and vice versa. Our results pave the road for future studies addressing the issues: (i) whether a virus infection can be inhibited by TC-Cbl complexes in vivo; and (ii) whether any human virus employs the human TC-Cbl receptor CD320. In broader terms, our study sheds light on the intricate interplay between physiological roles of cellular receptors and their involvement in virus infection.
Collapse
|
11
|
Hicks WH, Bird CE, Traylor JI, Shi DD, El Ahmadieh TY, Richardson TE, McBrayer SK, Abdullah KG. Contemporary Mouse Models in Glioma Research. Cells 2021; 10:cells10030712. [PMID: 33806933 PMCID: PMC8004772 DOI: 10.3390/cells10030712] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Despite advances in understanding of the molecular pathogenesis of glioma, outcomes remain dismal. Developing successful treatments for glioma requires faithful in vivo disease modeling and rigorous preclinical testing. Murine models, including xenograft, syngeneic, and genetically engineered models, are used to study glioma-genesis, identify methods of tumor progression, and test novel treatment strategies. Since the discovery of highly recurrent isocitrate dehydrogenase (IDH) mutations in lower-grade gliomas, there is increasing emphasis on effective modeling of IDH mutant brain tumors. Improvements in preclinical models that capture the phenotypic and molecular heterogeneity of gliomas are critical for the development of effective new therapies. Herein, we explore the current status, advancements, and challenges with contemporary murine glioma models.
Collapse
Affiliation(s)
- William H. Hicks
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Cylaina E. Bird
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Jeffrey I. Traylor
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Diana D. Shi
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Tarek Y. El Ahmadieh
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Timothy E. Richardson
- Department of Pathology, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 75229, USA;
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harrold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence: (S.K.M.); (K.G.A.)
| | - Kalil G. Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
- Harrold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence: (S.K.M.); (K.G.A.)
| |
Collapse
|
12
|
Huijbregts L, Aiello V, Soggia A, Ravassard P, Rachdi L, Scharfmann R, Albagli O. Culture, differentiation, and transduction of mouse E12.5 pancreatic spheres: an in vitro model for the secondary transition of pancreas development. Islets 2021; 13:10-23. [PMID: 33641620 PMCID: PMC8018339 DOI: 10.1080/19382014.2020.1863723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
During the secondary transition of rodent pancreatic development, mainly between E12.5 and E15.5 in mice, exocrine and endocrine populations differentiate from pancreatic progenitors. Here we describe an experimental system for its study in vitro. First, we show that spheres derived from dissociated E12.5 mouse pancreases differentiate within 7 days into most pancreatic exocrine and endocrine cell types, including beta cells. The proportion and spatial repartition of the different endocrine populations mirror those observed during normal development. Thus, dissociation and culture do not impair the developmental events affecting pancreatic progenitors during the secondary transition. Moreover, dissociated cells from mouse E12.5 pancreas were transduced with ecotropic MLV-based retroviral vectors or, though less efficiently, with a mixture of ALV(A)-based retroviral vectors and gesicles containing the TVA (Tumor Virus A) receptor. As an additional improvement, we also created a transgenic mouse line expressing TVA under the control of the 4.5 kB pdx1 promoter (pdx1-TVA). We demonstrate that pancreatic progenitors from dissociated pdx1-TVA pancreas can be specifically transduced by ALV(A)-based retroviral vectors. Using this model, we expressed an activated mutant of the YAP transcriptional co-activator in pancreatic progenitors. These experiments indicate that deregulated YAP activity reduces endocrine and exocrine differentiation in the resulting spheres, confirming and extending previously published data. Thus, our experimental model recapitulates in vitro the crucial developmental decisions arising at the secondary transition and provides a convenient tool to study their genetic control.
Collapse
Affiliation(s)
- Lukas Huijbregts
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Virginie Aiello
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Andrea Soggia
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Philippe Ravassard
- Institut du Cerveau et de La Moelle Épinière (ICM), INSERM U1127, CNRS UMR 7225, Sorbonne Universités, Paris, France
| | - Latif Rachdi
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Raphaël Scharfmann
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Olivier Albagli
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
- CONTACT Olivier Albagli Institut Cochin, INSERM U1016, 123 Bd Du Port-Royal, Paris75014, France
| |
Collapse
|
13
|
Kanvinde PP, Malla AP, Connolly NP, Szulzewsky F, Anastasiadis P, Ames HM, Kim AJ, Winkles JA, Holland EC, Woodworth GF. Leveraging the replication-competent avian-like sarcoma virus/tumor virus receptor-A system for modeling human gliomas. Glia 2021; 69:2059-2076. [PMID: 33638562 PMCID: PMC8591561 DOI: 10.1002/glia.23984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.
Collapse
Affiliation(s)
- Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adarsha P Malla
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nina P Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Heather M Ames
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Akter F, Simon B, de Boer NL, Redjal N, Wakimoto H, Shah K. Pre-clinical tumor models of primary brain tumors: Challenges and opportunities. Biochim Biophys Acta Rev Cancer 2021; 1875:188458. [PMID: 33148506 PMCID: PMC7856042 DOI: 10.1016/j.bbcan.2020.188458] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
Primary brain tumors are a heterogeneous group of malignancies that originate in cells of the central nervous system. A variety of models tractable for preclinical studies have been developed to recapitulate human brain tumors, allowing us to understand the underlying pathobiology and explore potential treatments. However, many promising therapeutic strategies identified using preclinical models have shown limited efficacy or failed at the clinical trial stage. The inability to develop therapeutic strategies that significantly improve survival rates in patients highlight the compelling need to revisit the design of currently available animal models and explore the use of new models that allow us to bridge the gap between promising preclinical findings and clinical translation. In this review, we discuss current strategies used to model glioblastoma, the most malignant brain tumor in adults and highlight the shortcomings of specific models that must be circumvented for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Farhana Akter
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Brennan Simon
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Nadine Leonie de Boer
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Navid Redjal
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Hiroaki Wakimoto
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, United States of America.
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|
15
|
Hajj GNM, Nunes PBC, Roffe M. Genome-wide translation patterns in gliomas: An integrative view. Cell Signal 2020; 79:109883. [PMID: 33321181 DOI: 10.1016/j.cellsig.2020.109883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Gliomas are the most frequent tumors of the central nervous system (CNS) and include the highly malignant glioblastoma (GBM). Characteristically, gliomas have translational control deregulation related to overactivation of signaling pathways such as PI3K/AKT/mTORC1 and Ras/ERK1/2. Thus, mRNA translation appears to play a dominant role in glioma gene expression patterns. The, analysis of genome-wide translated transcripts, together known as the translatome, may reveal important information for understanding gene expression patterns in gliomas. This review provides a brief overview of translational control mechanisms altered in gliomas with a focus on the current knowledge related to the translatomes of glioma cells and murine glioma models. We present an integrative meta-analysis of selected glioma translatome data with the aim of identifying recurrent patterns of gene expression preferentially regulated at the level of translation and obtaining clues regarding the pathological significance of these alterations. Re-analysis of several translatome datasets was performed to compare the translatomes of glioma models with those of their non-tumor counterparts and to document glioma cell responses to radiotherapy and MNK modulation. The role of recurrently altered genes in the context of translational control and tumorigenesis are discussed.
Collapse
Affiliation(s)
- Glaucia Noeli Maroso Hajj
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| | - Paula Borzino Cordeiro Nunes
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil
| | - Martin Roffe
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| |
Collapse
|
16
|
Graham MS, Mellinghoff IK. Histone-Mutant Glioma: Molecular Mechanisms, Preclinical Models, and Implications for Therapy. Int J Mol Sci 2020; 21:E7193. [PMID: 33003625 PMCID: PMC7582376 DOI: 10.3390/ijms21197193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Pediatric high-grade glioma (pHGG) is the leading cause of cancer death in children. Despite histologic similarities, it has recently become apparent that this disease is molecularly distinct from its adult counterpart. Specific hallmark oncogenic histone mutations within pediatric malignant gliomas divide these tumors into subgroups with different neuroanatomic and chronologic predilections. In this review, we will summarize the characteristic molecular alterations of pediatric high-grade gliomas, with a focus on how preclinical models of these alterations have furthered our understanding of their oncogenicity as well as their potential impact on developing targeted therapies for this devastating disease.
Collapse
Affiliation(s)
- Maya S. Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ingo K. Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
17
|
Grigore F, Yang H, Hanson ND, VanBrocklin MW, Sarver AL, Robinson JP. BRAF inhibition in melanoma is associated with the dysregulation of histone methylation and histone methyltransferases. Neoplasia 2020; 22:376-389. [PMID: 32629178 PMCID: PMC7338995 DOI: 10.1016/j.neo.2020.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
The development of mutant BRAF inhibitors has improved the outcome for melanoma patients with BRAFV600E mutations. Although the initial response to these inhibitors can be dramatic, sometimes resulting in complete tumor regression, the majority of melanomas become resistant. To study resistance to BRAF inhibition, we developed a novel mouse model of melanoma using a tetracycline/doxycycline-regulated system that permits control of mutant BRAF expression. Treatment with doxycycline leads to loss of mutant BRAF expression and tumor regression, but tumors recur after a prolonged period of response to treatment. Vemurafenib, encorafenib and dabrafenib induce cell cycle arrest and apoptosis in BRAF melanoma cell lines; however, a residual population of tumor cells survive. Comparing gene expression in human cell lines and mouse tumors can assist with the identification of novel mechanisms of resistance. Accordingly, we conducted RNA sequencing analysis and immunoblotting on untreated and doxycycline-treated dormant mouse melanomas and human mutant BRAF melanoma cell lines treated with 2 μM vemurafenib for 20 days. We found conserved expression changes in histone methyltransferase genes ASH2, EZH2, PRMT5, SUV39H1, SUV39H2, and SYMD2 in P-ERK low, p-38 high melanoma cells following prolonged BRAF inhibition. Quantitative mass spectrometry, determined a corresponding reduction in histone Lys9 and Lys27 methylation and increase in Lys36 methylation in melanoma cell lines treated with 2 μM vemurafenib for 20 days. Thus, these changes as are part of the initiate response to BRAF inhibition and likely contribute to the survival of melanoma cells.
Collapse
Affiliation(s)
- Florina Grigore
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Hana Yang
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Nicholas D Hanson
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Aaron L Sarver
- Masonic Cancer Center, 2231 6th St SE, Minneapolis, MN 5545, USA; Institute for Health Informatics, 420 Delaware St. SE, Minneapolis, MN 55455, USA
| | - James P Robinson
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA; Masonic Cancer Center, 2231 6th St SE, Minneapolis, MN 5545, USA.
| |
Collapse
|
18
|
Roussel MF, Stripay JL. Modeling pediatric medulloblastoma. Brain Pathol 2019; 30:703-712. [PMID: 31788908 PMCID: PMC7317774 DOI: 10.1111/bpa.12803] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mouse models of medulloblastoma have proven to be instrumental in understanding disease mechanisms, particularly the role of epigenetic and molecular drivers, and establishing appropriate preclinical pipelines. To date, our research community has developed murine models for all four groups of medulloblastoma, each of which will be critical for the identification and development of new therapeutic approaches. Approaches to modeling medulloblastoma range from genetic engineering with CRISPR/Cas9 or in utero electroporation, to orthotopic and patient‐derived orthotopic xenograft systems. Each approach or model presents unique advantages that have ultimately contributed to an appreciation of medulloblastoma heterogeneity and the clinical obstacles that exist for this patient population.
Collapse
Affiliation(s)
- Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Jennifer L Stripay
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| |
Collapse
|
19
|
Swiatnicki MR, Andrechek ER. How to Choose a Mouse Model of Breast Cancer, a Genomic Perspective. J Mammary Gland Biol Neoplasia 2019; 24:231-243. [PMID: 31227983 DOI: 10.1007/s10911-019-09433-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Human breast cancer is a heterogeneous disease with numerous subtypes that have been defined through immunohistological, histological, and gene expression patterns. The diversity of breast cancer has made the study of its various underlying causes complex. To facilitate the examination of particular facets of breast cancer, mouse models have been generated, ranging from carcinogen induced models to genetically engineered mice. While mouse models have been generated to mimic the initiating event, including p53 loss, BRCA loss, or overexpression of HER2 / Neu / erbB2, other genomic events are often not well characterized. However, these secondary genetic events are often critical to the mouse tumor evolution, subtype, and outcome, just as they are in human breast cancer. As such, these other genomic events are a critical component of what models are chosen to study specific subtypes of human breast cancer. Here we review the genomic analyses that have been completed for various genetically engineered mouse models, how they compare to human breast cancer, and detail how this information can be used in choosing a mouse model for analysis.
Collapse
Affiliation(s)
- Matthew R Swiatnicki
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
20
|
Ding AS, Routkevitch D, Jackson C, Lim M. Targeting Myeloid Cells in Combination Treatments for Glioma and Other Tumors. Front Immunol 2019; 10:1715. [PMID: 31396227 PMCID: PMC6664066 DOI: 10.3389/fimmu.2019.01715] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells constitute a significant part of the immune system in the context of cancer, exhibiting both immunostimulatory effects, through their role as antigen presenting cells, and immunosuppressive effects, through their polarization to myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages. While they are rarely sufficient to generate potent anti-tumor effects on their own, myeloid cells have the ability to interact with a variety of immune populations to aid in mounting an appropriate anti-tumor immune response. Therefore, myeloid therapies have gained momentum as a potential adjunct to current therapies such as immune checkpoint inhibitors (ICIs), dendritic cell vaccines, oncolytic viruses, and traditional chemoradiation to enhance therapeutic response. In this review, we outline critical pathways involved in the recruitment of the myeloid population to the tumor microenvironment and in their polarization to immunostimulatory or immunosuppressive phenotypes. We also emphasize existing strategies of modulating myeloid recruitment and polarization to improve anti-tumor immune responses. We then summarize current preclinical and clinical studies that highlight treatment outcomes of combining myeloid targeted therapies with other immune-based and traditional therapies. Despite promising results from reports of limited clinical trials thus far, there remain challenges in optimally harnessing the myeloid compartment as an adjunct to enhancing anti-tumor immune responses. Further large Phase II and ultimately Phase III clinical trials are needed to elucidate the treatment benefit of combination therapies in the fight against cancer.
Collapse
Affiliation(s)
| | | | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Albagli O, Maugein A, Huijbregts L, Bredel D, Carlier G, Martin P, Scharfmann R. New α- and SIN γ-retrovectors for safe transduction and specific transgene expression in pancreatic β cell lines. BMC Biotechnol 2019; 19:35. [PMID: 31208395 PMCID: PMC6580483 DOI: 10.1186/s12896-019-0531-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral vectors are invaluable tools to transfer genes and/or regulatory sequences into differentiated cells such as pancreatic cells. To date, several kinds of viral vectors have been used to transduce different pancreatic cell types, including insulin-producing β cells. However, few studies have used vectors derived from « simple » retroviruses, such as avian α- or mouse γ-retroviruses, despite their high experimental convenience. Moreover, such vectors were never designed to specifically target transgene expression into β cells. RESULTS We here describe two novel α- or SIN (Self-Inactivating) γ-retrovectors containing the RIP (Rat Insulin Promoter) as internal promoter. These two retrovectors are easily produced in standard BSL2 conditions, rapidly concentrated if needed, and harbor a large multiple cloning site. For the SIN γ-retrovector, either the VSV-G (pantropic) or the retroviral ecotropic (rodent specific) envelope was used. For the α-retrovector, we used the A type envelope, as its receptor, termed TVA, is only naturally present in avian cells and can efficiently be provided to mammalian β cells through either exogenous expression upon cDNA transfer or gesicle-mediated delivery of the protein. As expected, the transgenes cloned into the two RIP-containing retrovectors displayed a strong preferential expression in β over non-β cells compared to transgenes cloned in their non-RIP (CMV- or LTR-) regulated counterparts. We further show that RIP activity of both retrovectors mirrored fluctuations affecting endogenous INSULIN gene expression in human β cells. Finally, both α- and SIN γ-retrovectors were extremely poorly mobilized by the BXV1 xenotropic retrovirus, a common invader of human cells grown in immunodeficient mice, and, most notably, of human β cell lines. CONCLUSION Our novel α- and SIN γ-retrovectors are safe and convenient tools to stably and specifically express transgene(s) in mammalian β cells. Moreover, they both reproduce some regulatory patterns affecting INSULIN gene expression. Thus, they provide a helpful tool to both study the genetic control of β cell function and monitor changes in their differentiation status.
Collapse
Affiliation(s)
- Olivier Albagli
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France.
| | - Alicia Maugein
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France
| | - Lukas Huijbregts
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France
| | - Delphine Bredel
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France.,Present Address: Laboratoire de Recherche Translationnelle en Immunothérapie, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - Géraldine Carlier
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France
| | - Patrick Martin
- Université Côte d'Azur, CNRS UMR7277 INSERM U1099, iBV (Institut de Biologie Valrose), Université Nice Sophia Antipolis, Bâtiment Sciences Naturelles; UFR Sciences, Parc Valrose, 28, avenue Valrose, 06108, Nice Cedex 2, France
| | - Raphaël Scharfmann
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France
| |
Collapse
|
22
|
Oldrini B, Curiel-García Á, Marques C, Matia V, Uluçkan Ö, Graña-Castro O, Torres-Ruiz R, Rodriguez-Perales S, Huse JT, Squatrito M. Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling. Nat Commun 2018; 9:1466. [PMID: 29654229 PMCID: PMC5899147 DOI: 10.1038/s41467-018-03731-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
To accurately recapitulate the heterogeneity of human diseases, animal models require to recreate multiple complex genetic alterations. Here, we combine the RCAS-TVA system with the CRISPR-Cas9 genome editing tools for precise modeling of human tumors. We show that somatic deletion in neural stem cells of a variety of known tumor suppressor genes (Trp53, Cdkn2a, and Pten) leads to high-grade glioma formation. Moreover, by simultaneous delivery of pairs of guide RNAs we generate different gene fusions with oncogenic potential, either by chromosomal deletion (Bcan-Ntrk1) or by chromosomal translocation (Myb-Qk). Lastly, using homology-directed-repair, we also produce tumors carrying the homologous mutation to human BRAF V600E, frequently identified in a variety of tumors, including different types of gliomas. In summary, we have developed an extremely versatile mouse model for in vivo somatic genome editing, that will elicit the generation of more accurate cancer models particularly appropriate for pre-clinical testing.
Collapse
Affiliation(s)
- Barbara Oldrini
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Álvaro Curiel-García
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Carolina Marques
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Veronica Matia
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Özge Uluçkan
- Genes, Development, and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre, CNIO, 28029, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, CNIO, 28029, Madrid, Spain
| | - Raul Torres-Ruiz
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain.
| |
Collapse
|
23
|
Wang J, Garancher A, Ramaswamy V, Wechsler-Reya RJ. Medulloblastoma: From Molecular Subgroups to Molecular Targeted Therapies. Annu Rev Neurosci 2018; 41:207-232. [PMID: 29641939 DOI: 10.1146/annurev-neuro-070815-013838] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain tumors are the leading cause of cancer-related death in children, and medulloblastoma (MB) is the most common malignant pediatric brain tumor. Advances in surgery, radiation, and chemotherapy have improved the survival of MB patients. But despite these advances, 25-30% of patients still die from the disease, and survivors suffer severe long-term side effects from the aggressive therapies they receive. Although MB is often considered a single disease, molecular profiling has revealed a significant degree of heterogeneity, and there is a growing consensus that MB consists of multiple subgroups with distinct driver mutations, cells of origin, and prognosis. Here, we review recent progress in MB research, with a focus on the genes and pathways that drive tumorigenesis, the animal models that have been developed to study tumor biology, and the advances in conventional and targeted therapy.
Collapse
Affiliation(s)
- Jun Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| | - Alexandra Garancher
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| | - Vijay Ramaswamy
- Division of Haematology/Oncology and Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| |
Collapse
|
24
|
Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS One 2017; 12:e0174557. [PMID: 28358926 PMCID: PMC5373526 DOI: 10.1371/journal.pone.0174557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022] Open
Abstract
Previously rodent preclinical research in gliomas frequently involved implantation of cell lines such as C6 and 9L into the rat brain. More recently, mouse models have taken over, the genetic manipulability of the mouse allowing the creation of genetically accurate models outweighed the disadvantage of its smaller brain size that limited time allowed for tumor progression. Here we illustrate a method that allows glioma formation in the rat using the replication competent avian-like sarcoma (RCAS) virus / tumor virus receptor-A (tv-a) transgenic system of post-natal cell type-specific gene transfer. The RCAS/tv-a model has emerged as a particularly versatile and accurate modeling technology by enabling spatial, temporal, and cell type-specific control of individual gene transformations and providing de novo formed glial tumors with distinct molecular subtypes mirroring human GBM. Nestin promoter-driven tv-a (Ntv-a) transgenic Sprague-Dawley rat founder lines were created and RCAS PDGFA and p53 shRNA constructs were used to initiate intracranial brain tumor formation. Tumor formation and progression were confirmed and visualized by magnetic resonance imaging (MRI) and spectroscopy. The tumors were analyzed using histopathological and immunofluorescent techniques. All experimental animals developed large, heterogeneous brain tumors that closely resembled human GBM. Median survival was 92 days from tumor initiation and 62 days from the first point of tumor visualization on MRI. Each tumor-bearing animal showed time dependent evidence of malignant progression to high-grade glioma by MRI and neurological examination. Post-mortem tumor analysis demonstrated the presence of several key characteristics of human GBM, including high levels of tumor cell proliferation, pseudopalisading necrosis, microvascular proliferation, invasion of tumor cells into surrounding tissues, peri-tumoral reactive astrogliosis, lymphocyte infiltration, presence of numerous tumor-associated microglia- and bone marrow-derived macrophages, and the formation of stem-like cell niches within the tumor. This transgenic rat model may enable detailed interspecies comparisons of fundamental cancer pathways and clinically relevant experimental imaging procedures and interventions that are limited by the smaller size of the mouse brain.
Collapse
|
25
|
Affiliation(s)
- Sabrina Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA.,Department of Bioengineering, the Department of Cell and Molecular Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
26
|
Abstract
Injection of RCAS viruses is highly customizable to the desired target tissue. RCAS viruses can be delivered into mice in vivo by injection of virus-producing cells or by injection of concentrated virus. When cells are injected, they persist for several days, continuously producing virus. Typically the decision of whether to inject virus-producing cells or concentrated virus is determined by the volume that can be reliably injected into a given tissue and the age of the animal when the virus delivery is performed. This general protocol describes the intraperitoneal injection of RCAS-expressing cells into mice and discusses the circumstances in which the injection of concentrated virus is preferred.
Collapse
Affiliation(s)
- Leanne G Ahronian
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Brian C Lewis
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|