1
|
Chow DJX, Schartner EP, Corsetti S, Upadhya A, Morizet J, Gunn-Moore FJ, Dunning KR, Dholakia K. Quantifying DNA damage following light sheet and confocal imaging of the mammalian embryo. Sci Rep 2024; 14:20760. [PMID: 39237572 PMCID: PMC11377761 DOI: 10.1038/s41598-024-71443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Embryo quality assessment by optical imaging is increasing in popularity. Among available optical techniques, light sheet microscopy has emerged as a superior alternative to confocal microscopy due to its geometry, enabling faster image acquisition with reduced photodamage to the sample. However, previous assessments of photodamage induced by imaging may have failed to measure more subtle impacts. In this study, we employed DNA damage as a sensitive indicator of photodamage. We use light sheet microscopy with excitation at a wavelength of 405 nm for imaging embryo autofluorescence and compare its performance to laser scanning confocal microscopy. At an equivalent signal-to-noise ratio for images acquired with both modalities, light sheet microscopy reduced image acquisition time by ten-fold, and did not induce DNA damage when compared to non-imaged embryos. In contrast, imaging with confocal microscopy led to significantly higher levels of DNA damage within embryos and had a higher photobleaching rate. Light sheet imaging is also capable of inducing DNA damage within the embryo but requires multiple cycles of volumetric imaging. Collectively, this study confirms that light sheet microscopy is faster and safer than confocal microscopy for imaging live embryos, indicating its potential as a label-free diagnostic for embryo quality.
Collapse
Affiliation(s)
- Darren J X Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Erik P Schartner
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Stella Corsetti
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| | - Avinash Upadhya
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Josephine Morizet
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Frank J Gunn-Moore
- School of Biology, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia.
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia.
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
2
|
Chow DJX, Tan TCY, Upadhya A, Lim M, Dholakia K, Dunning KR. Viewing early life without labels: optical approaches for imaging the early embryo†. Biol Reprod 2024; 110:1157-1174. [PMID: 38647415 PMCID: PMC11180623 DOI: 10.1093/biolre/ioae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Embryo quality is an important determinant of successful implantation and a resultant live birth. Current clinical approaches for evaluating embryo quality rely on subjective morphology assessments or an invasive biopsy for genetic testing. However, both approaches can be inherently inaccurate and crucially, fail to improve the live birth rate following the transfer of in vitro produced embryos. Optical imaging offers a potential non-invasive and accurate avenue for assessing embryo viability. Recent advances in various label-free optical imaging approaches have garnered increased interest in the field of reproductive biology due to their ability to rapidly capture images at high resolution, delivering both morphological and molecular information. This burgeoning field holds immense potential for further development, with profound implications for clinical translation. Here, our review aims to: (1) describe the principles of various imaging systems, distinguishing between approaches that capture morphological and molecular information, (2) highlight the recent application of these technologies in the field of reproductive biology, and (3) assess their respective merits and limitations concerning the capacity to evaluate embryo quality. Additionally, the review summarizes challenges in the translation of optical imaging systems into routine clinical practice, providing recommendations for their future development. Finally, we identify suitable imaging approaches for interrogating the mechanisms underpinning successful embryo development.
Collapse
Affiliation(s)
- Darren J X Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Avinash Upadhya
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Megan Lim
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Mitrakas AG, Tsolou A, Didaskalou S, Karkaletsou L, Efstathiou C, Eftalitsidis E, Marmanis K, Koffa M. Applications and Advances of Multicellular Tumor Spheroids: Challenges in Their Development and Analysis. Int J Mol Sci 2023; 24:ijms24086949. [PMID: 37108113 PMCID: PMC10138394 DOI: 10.3390/ijms24086949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Biomedical research requires both in vitro and in vivo studies in order to explore disease processes or drug interactions. Foundational investigations have been performed at the cellular level using two-dimensional cultures as the gold-standard method since the early 20th century. However, three-dimensional (3D) cultures have emerged as a new tool for tissue modeling over the last few years, bridging the gap between in vitro and animal model studies. Cancer has been a worldwide challenge for the biomedical community due to its high morbidity and mortality rates. Various methods have been developed to produce multicellular tumor spheroids (MCTSs), including scaffold-free and scaffold-based structures, which usually depend on the demands of the cells used and the related biological question. MCTSs are increasingly utilized in studies involving cancer cell metabolism and cell cycle defects. These studies produce massive amounts of data, which demand elaborate and complex tools for thorough analysis. In this review, we discuss the advantages and disadvantages of several up-to-date methods used to construct MCTSs. In addition, we also present advanced methods for analyzing MCTS features. As MCTSs more closely mimic the in vivo tumor environment, compared to 2D monolayers, they can evolve to be an appealing model for in vitro tumor biology studies.
Collapse
Affiliation(s)
- Achilleas G Mitrakas
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Avgi Tsolou
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stylianos Didaskalou
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Lito Karkaletsou
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Christos Efstathiou
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Evgenios Eftalitsidis
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Marmanis
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Koffa
- Cell Biology Lab, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
4
|
Tan TCY, Dunning KR. Non-invasive assessment of oocyte developmental competence. Reprod Fertil Dev 2022; 35:39-50. [PMID: 36592982 DOI: 10.1071/rd22217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oocyte quality is a key factor influencing IVF success. The oocyte and surrounding cumulus cells, known collectively as the cumulus oocyte complex (COC), communicate bi-directionally and regulate each other's metabolic function to support oocyte growth and maturation. Many studies have attempted to associate metabolic markers with oocyte quality, including metabolites in follicular fluid or 'spent medium' following maturation, gene expression of cumulus cells and measuring oxygen consumption in medium surrounding COCs. However, these methods fail to provide spatial metabolic information on the separate oocyte and cumulus cell compartments. Optical imaging of the autofluorescent cofactors - reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD) - has been put forward as an approach to generate spatially resolved measurements of metabolism within individual cells of the COC. The optical redox ratio (FAD/[NAD(P)H+FAD]), calculated from these cofactors, can act as an indicator of overall metabolic activity in the oocyte and cumulus cell compartments. Confocal microscopy, fluorescence lifetime imaging microscopy (FLIM) and hyperspectral microscopy may be used for this purpose. This review provides an overview of current optical imaging techniques that capture the inner biochemistry within cells of the COC and discusses the potential for such imaging to assess oocyte developmental competence.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Glorieux L, Sapala A, Willnow D, Moulis M, Salowka A, Darrigrand JF, Edri S, Schonblum A, Sakhneny L, Schaumann L, Gómez HF, Lang C, Conrad L, Guillemot F, Levenberg S, Landsman L, Iber D, Pierreux CE, Spagnoli FM. Development of a 3D atlas of the embryonic pancreas for topological and quantitative analysis of heterologous cell interactions. Development 2022; 149:274013. [PMID: 35037942 PMCID: PMC8918780 DOI: 10.1242/dev.199655] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
Generating comprehensive image maps, while preserving spatial three-dimensional (3D) context, is essential in order to locate and assess quantitatively specific cellular features and cell-cell interactions during organ development. Despite recent advances in 3D imaging approaches, our current knowledge of the spatial organization of distinct cell types in the embryonic pancreatic tissue is still largely based on two-dimensional histological sections. Here, we present a light-sheet fluorescence microscopy approach to image the pancreas in three dimensions and map tissue interactions at key time points in the mouse embryo. We demonstrate the utility of the approach by providing volumetric data, 3D distribution of three main cellular components (epithelial, mesenchymal and endothelial cells) within the developing pancreas, and quantification of their relative cellular abundance within the tissue. Interestingly, our 3D images show that endocrine cells are constantly and increasingly in contact with endothelial cells forming small vessels, whereas the interactions with mesenchymal cells decrease over time. These findings suggest distinct cell-cell interaction requirements for early endocrine cell specification and late differentiation. Lastly, we combine our image data in an open-source online repository (referred to as the Pancreas Embryonic Cell Atlas). Summary: A light-sheet fluorescence microscopy approach is used for 3D imaging of the pancreas and to quantitatively map its interactions with surrounding tissues at key development time points in the mouse embryo.
Collapse
Affiliation(s)
- Laura Glorieux
- Cell Biology Unit, de Duve Institute, UCLouvain, Woluwe 1200, Belgium
| | - Aleksandra Sapala
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Basel 4058, Switzerland
| | - David Willnow
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Manon Moulis
- Cell Biology Unit, de Duve Institute, UCLouvain, Woluwe 1200, Belgium
| | - Anna Salowka
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Jean-Francois Darrigrand
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Shlomit Edri
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Anat Schonblum
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lina Sakhneny
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Laura Schaumann
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Basel 4058, Switzerland
| | - Harold F Gómez
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Basel 4058, Switzerland
| | - Christine Lang
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Basel 4058, Switzerland
| | - Lisa Conrad
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Basel 4058, Switzerland
| | | | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Basel 4058, Switzerland
| | | | - Francesca M Spagnoli
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
6
|
Bustamante JM, Sanchez-Valdez F, Padilla AM, White B, Wang W, Tarleton RL. A modified drug regimen clears active and dormant trypanosomes in mouse models of Chagas disease. Sci Transl Med 2021; 12:12/567/eabb7656. [PMID: 33115952 DOI: 10.1126/scitranslmed.abb7656] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022]
Abstract
A major contributor to treatment failure in Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is that current treatment regimens do not address the drug insensitivity of transiently dormant T. cruzi amastigotes. Here, we demonstrated that use of a currently available drug in a modified treatment regimen of higher individual doses, given less frequently over an extended treatment period, could consistently extinguish T. cruzi infection in three mouse models of Chagas disease. Once per week administration of benznidazole at a dose 2.5 to 5 times the standard daily dose rapidly eliminated actively replicating parasites and ultimately eradicated the residual, transiently dormant parasite population in mice. This outcome was initially confirmed in "difficult to cure" mouse infection models using immunological, parasitological, and molecular biological approaches and ultimately corroborated by whole organ analysis of optically clarified tissues using light sheet fluorescence microscopy (LSFM). This tool was effective for monitoring pathogen load in intact organs, including detection of individual dormant parasites, and for assessing treatment outcomes. LSFM-based analysis also suggested that dormant amastigotes of T. cruzi may not be fully resistant to trypanocidal compounds such as benznidazole. Collectively, these studies provide important information on the phenomenon of dormancy in T. cruzi infection in mice, demonstrate methods to therapeutically override dormancy using a currently available drug, and provide methods to monitor alternative therapeutic approaches for this, and possibly other, low-density infectious agents.
Collapse
Affiliation(s)
- Juan M Bustamante
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Fernando Sanchez-Valdez
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA.,Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Argentina
| | - Angel M Padilla
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Brooke White
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Wei Wang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA. .,Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Rasse TM, Hollandi R, Horvath P. OpSeF: Open Source Python Framework for Collaborative Instance Segmentation of Bioimages. Front Bioeng Biotechnol 2020; 8:558880. [PMID: 33117778 PMCID: PMC7576117 DOI: 10.3389/fbioe.2020.558880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Various pre-trained deep learning models for the segmentation of bioimages have been made available as developer-to-end-user solutions. They are optimized for ease of use and usually require neither knowledge of machine learning nor coding skills. However, individually testing these tools is tedious and success is uncertain. Here, we present the Open Segmentation Framework (OpSeF), a Python framework for deep learning-based instance segmentation. OpSeF aims at facilitating the collaboration of biomedical users with experienced image analysts. It builds on the analysts' knowledge in Python, machine learning, and workflow design to solve complex analysis tasks at any scale in a reproducible, well-documented way. OpSeF defines standard inputs and outputs, thereby facilitating modular workflow design and interoperability with other software. Users play an important role in problem definition, quality control, and manual refinement of results. OpSeF semi-automates preprocessing, convolutional neural network (CNN)-based segmentation in 2D or 3D, and postprocessing. It facilitates benchmarking of multiple models in parallel. OpSeF streamlines the optimization of parameters for pre- and postprocessing such, that an available model may frequently be used without retraining. Even if sufficiently good results are not achievable with this approach, intermediate results can inform the analysts in the selection of the most promising CNN-architecture in which the biomedical user might invest the effort of manually labeling training data. We provide Jupyter notebooks that document sample workflows based on various image collections. Analysts may find these notebooks useful to illustrate common segmentation challenges, as they prepare the advanced user for gradually taking over some of their tasks and completing their projects independently. The notebooks may also be used to explore the analysis options available within OpSeF in an interactive way and to document and share final workflows. Currently, three mechanistically distinct CNN-based segmentation methods, the U-Net implementation used in Cellprofiler 3.0, StarDist, and Cellpose have been integrated within OpSeF. The addition of new networks requires little; the addition of new models requires no coding skills. Thus, OpSeF might soon become both an interactive model repository, in which pre-trained models might be shared, evaluated, and reused with ease.
Collapse
Affiliation(s)
- Tobias M. Rasse
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Réka Hollandi
- Synthetic and Systems Biology Unit, Biological Research Center (BRC), Szeged, Hungary
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Center (BRC), Szeged, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Liau ES, Yen YP, Chen JA. Visualization of Motor Axon Navigation and Quantification of Axon Arborization In Mouse Embryos Using Light Sheet Fluorescence Microscopy. J Vis Exp 2018. [PMID: 29806844 DOI: 10.3791/57546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Spinal motor neurons (MNs) extend their axons to communicate with their innervating targets, thereby controlling movement and complex tasks in vertebrates. Thus, it is critical to uncover the molecular mechanisms of how motor axons navigate to, arborize, and innervate their peripheral muscle targets during development and degeneration. Although transgenic Hb9::GFP mouse lines have long served to visualize motor axon trajectories during embryonic development, detailed descriptions of the full spectrum of axon terminal arborization remain incomplete due to the pattern complexity and limitations of current optical microscopy. Here, we describe an improved protocol that combines light sheet fluorescence microscopy (LSFM) and robust image analysis to qualitatively and quantitatively visualize developing motor axons. This system can be easily adopted to cross genetic mutants or MN disease models with Hb9::GFP lines, revealing novel molecular mechanisms that lead to defects in motor axon navigation and arborization.
Collapse
Affiliation(s)
- Ee Shan Liau
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center; Institute of Molecular Biology, Academia Sinica
| | - Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica; Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University
| | - Jun-An Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center; Institute of Molecular Biology, Academia Sinica;
| |
Collapse
|
9
|
Karunamuni G, Gu S, Doughman YQ, Noonan AI, Rollins AM, Jenkins MW, Watanabe M. Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure. Dev Dyn 2015; 244:607-18. [PMID: 25546089 DOI: 10.1002/dvdy.24246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The most commonly used method to analyze congenital heart defects involves serial sectioning and histology. However, this is often a time-consuming process where the quantification of cardiac defects can be difficult due to problems with accurate section registration. Here we demonstrate the advantages of using optical coherence tomography, a comparatively new and rising technology, to phenotype avian embryo hearts in a model of fetal alcohol syndrome where a binge-like quantity of alcohol/ethanol was introduced at gastrulation. RESULTS The rapid, consistent imaging protocols allowed for the immediate identification of cardiac anomalies, including ventricular septal defects and misaligned/missing vessels. Interventricular septum thicknesses and vessel diameters for three of the five outflow arteries were also significantly reduced. Outflow and atrioventricular valves were segmented using image processing software and had significantly reduced volumes compared to controls. This is the first study to our knowledge that has 3D reconstructed the late-stage cardiac valves in precise detail to examine their morphology and dimensions. CONCLUSIONS We believe, therefore, that optical coherence tomography, with its ability to rapidly image and quantify tiny embryonic structures in high resolution, will serve as an excellent and cost-effective preliminary screening tool for developmental biologists working with a variety of experimental/disease models.
Collapse
Affiliation(s)
- Ganga Karunamuni
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | | | |
Collapse
|
10
|
Swoger J, Pampaloni F, Stelzer EHK. Imaging cellular spheroids with a single (selective) plane illumination microscope. Cold Spring Harb Protoc 2014; 2014:106-113. [PMID: 24371324 DOI: 10.1101/pdb.prot080176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In modern biology, most optical imaging technologies are applied to two-dimensional cell culture systems. However, investigation of physiological context requires specimens that display the complex three-dimensional (3D) relationship of cells that occurs in tissue sections and in naturally developing organisms. The imaging of highly scattering multicellular specimens presents a number of challenges, including limited optical penetration depth, phototoxicity, and fluorophore bleaching. Light-sheet-based fluorescence microscopy (LSFM) overcomes many drawbacks of conventional fluorescence microscopy by using an orthogonal/azimuthal fluorescence arrangement with independent sets of lenses for illumination and detection. The specimen is illuminated from the side with a thin light sheet that overlaps with the focal plane of a wide-field fluorescence microscope. Optical sectioning and minimal phototoxic damage or photobleaching outside a small volume close to the focal plane are intrinsic properties of LSFM. The principles of LSFM are implemented in the single (or selective) plane illumination microscope (SPIM). Cellular spheroids are spherical aggregations of hundreds to thousands of cells and they provide a useful model system for studies of 3D cell biology. Here we describe a protocol for imaging cellular spheroids by SPIM.
Collapse
|
11
|
Swoger J, Pampaloni F, Stelzer EHK. Imaging MDCK cysts with a single (selective) plane illumination microscope. Cold Spring Harb Protoc 2014; 2014:114-8. [PMID: 24371325 DOI: 10.1101/pdb.prot080184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In modern biology, most optical imaging technologies are applied to two-dimensional cell culture systems. However, investigation of physiological context requires specimens that display the complex three-dimensional (3D) relationship of cells that occurs in tissue sections and in naturally developing organisms. The imaging of highly scattering multicellular specimens presents a number of challenges, including limited optical penetration depth, phototoxicity, and fluorophore bleaching. Light-sheet-based fluorescence microscopy (LSFM) overcomes many drawbacks of conventional fluorescence microscopy by using an orthogonal/azimuthal fluorescence arrangement with independent sets of lenses for illumination and detection. The specimen is illuminated from the side with a thin light sheet that overlaps with the focal plane of a wide-field fluorescence microscope. Optical sectioning and minimal phototoxic damage or photobleaching outside a small volume close to the focal plane are intrinsic properties of LSFM. The principles of LSFM are implemented in the single (or selective) plane illumination microscope (SPIM). Madin-Darby canine kidney (MDCK) cysts grown in extracellular matrix (ECM) hydrogels provide a useful model system for studies of 3D cell biology. Here, we describe protocols for growing MDCK cysts within 3D type I collagen or reconstituted basement membrane (Matrigel) and for imaging these cysts by SPIM.
Collapse
|