1
|
Deisseroth CA, Lerma VC, Magyar CL, Pfliger JM, Nayak A, Bliss ND, LeMaire AW, Narayanan V, Balak C, Zanni G, Valente EM, Bertini E, Benke PJ, Wangler MF, Chao HT. An Integrated Phenotypic and Genotypic Approach Reveals a High-Risk Subtype Association for EBF3 Missense Variants Affecting the Zinc Finger Domain. Ann Neurol 2022; 92:138-153. [PMID: 35340043 DOI: 10.1002/ana.26359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Collier/Olf/EBF (COE) transcription factors have distinct expression patterns in the developing and mature nervous system. To date, a neurological disease association has been conclusively established for only the Early B-cell Factor-3 (EBF3) COE family member through the identification of heterozygous loss-of-function variants in individuals with autism spectrum/neurodevelopmental disorders (NDD). Here, we identify a symptom severity risk association with missense variants primarily disrupting the zinc finger domain (ZNF) in EBF3-related NDD. METHODS A phenotypic assessment of 41 individuals was combined with a literature meta-analysis for a total of 83 individuals diagnosed with EBF3-related NDD. Quantitative diagnostic phenotypic and symptom severity scales were developed to compare EBF3 variant type and location to identify genotype-phenotype correlations. To stratify the effects of EBF3 variants disrupting either the DNA-binding domain (DBD) or the ZNF, we used in vivo fruit fly UAS-GAL4 expression and in vitro luciferase assays. RESULTS We show that patient symptom severity correlates with EBF3 missense variants perturbing the ZNF, which is a key protein domain required for stabilizing the interaction between EBF3 and the target DNA sequence. We found that ZNF-associated variants failed to restore viability in the fruit fly and impaired transcriptional activation. However, the recurrent variant EBF3 p.Arg209Trp in the DBD is capable of partially rescuing viability in the fly and preserved transcriptional activation. INTERPRETATION We describe a symptom severity risk association with ZNF perturbations and EBF3 loss-of-function in the largest reported cohort to date of EBF3-related NDD patients. This analysis should have potential predictive clinical value for newly identified patients with EBF3 gene variants. ANN NEUROL 2022;92:138-153.
Collapse
Affiliation(s)
- Cole A Deisseroth
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Vanesa C Lerma
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Christina L Magyar
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Jessica Mae Pfliger
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models, and Therapeutics Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Aarushi Nayak
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nathan D Bliss
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ashley W LeMaire
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christopher Balak
- Biomedical Sciences Graduate Program, University of California at San Diego, San Diego, CA, USA
| | - Ginevra Zanni
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Bertini
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Paul J Benke
- Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - Michael F Wangler
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Tuan Chao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, USA
| |
Collapse
|
2
|
The G3BP1-UPF1-Associated Long Non-Coding RNA CALA Regulates RNA Turnover in the Cytoplasm. Noncoding RNA 2022; 8:ncrna8040049. [PMID: 35893232 PMCID: PMC9326601 DOI: 10.3390/ncrna8040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Besides transcription, RNA decay accounts for a large proportion of regulated gene expression and is paramount for cellular functions. Classical RNA surveillance pathways, like nonsense-mediated decay (NMD), are also implicated in the turnover of non-mutant transcripts. Whereas numerous protein factors have been assigned to distinct RNA decay pathways, the contribution of long non-coding RNAs (lncRNAs) to RNA turnover remains unknown. Here we identify the lncRNA CALA as a potent regulator of RNA turnover in endothelial cells. We demonstrate that CALA forms cytoplasmic ribonucleoprotein complexes with G3BP1 and regulates endothelial cell functions. A detailed characterization of these G3BP1-positive complexes by mass spectrometry identifies UPF1 and numerous other NMD factors having cytoplasmic G3BP1-association that is CALA-dependent. Importantly, CALA silencing impairs degradation of NMD target transcripts, establishing CALA as a non-coding regulator of RNA steady-state levels in the endothelium.
Collapse
|
3
|
Magyar CL, Murdock DR, Burrage LC, Dai H, Lalani SR, Lewis RA, Lin Y, Astudillo MF, Rosenfeld JA, Tran AA, Gibson JB, Bacino CA, Lee BH, Chao HT. PRUNE1 c.933G>A synonymous variant induces exon 7 skipping, disrupts the DHHA2 domain, and leads to an atypical NMIHBA syndrome presentation: Case report and review of the literature. Am J Med Genet A 2022; 188:1868-1874. [PMID: 35194938 PMCID: PMC11149102 DOI: 10.1002/ajmg.a.62704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/12/2021] [Accepted: 02/05/2022] [Indexed: 11/09/2022]
Abstract
Prune exopolyphosphatase-1 (PRUNE1) encodes a member of the aspartic acid-histidine-histidine (DHH) phosphodiesterase superfamily that regulates cell migration and proliferation during brain development. In 2015, biallelic PRUNE1 loss-of-function variants were identified to cause the neurodevelopmental disorder with microcephaly, hypotonia, and variable brain abnormalities (NMIHBA, OMIM#617481). NMIHBA is characterized by the namesake features and structural brain anomalies including thinning of the corpus callosum, cerebral and cerebellar atrophy, and delayed myelination. To date, 47 individuals have been reported in the literature, but the phenotypic spectrum of PRUNE1-related disorders and their causative variants remains to be characterized fully. Here, we report a novel homozygous PRUNE1 NM_021222.2:c.933G>A synonymous variant identified in a 6-year-old boy with intellectual and developmental disabilities, hypotonia, and spastic diplegia, but with the absence of microcephaly, brain anomalies, or seizures. Fibroblast RNA sequencing revealed that the PRUNE1 NM_021222.1:c.933G>A variant resulted in an in-frame skipping of the penultimate exon 7, removing 53 amino acids from an important protein domain. This case represents the first synonymous variant and the third pathogenic variant known to date affecting the DHH-associated domain (DHHA2 domain). These findings extend the genotypic and phenotypic spectrums in PRUNE1-related disorders and highlight the importance of considering synonymous splice site variants in atypical presentations.
Collapse
Affiliation(s)
- Christina L Magyar
- Graduate Program in Genetics and Genomics, Medical Scientist Training Program, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Yuezhen Lin
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Marcela F Astudillo
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alyssa A Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James B Gibson
- Section of Metabolic Genetics, Dell Children's Medical Group, Austin, Texas, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Hsiao-Tuan Chao
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 2020; 20:406-420. [PMID: 30992545 DOI: 10.1038/s41580-019-0126-2] [Citation(s) in RCA: 496] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses - adaptation, differentiation or death - to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
5
|
Beißel C, Grosse S, Krebber H. Dbp5/DDX19 between Translational Readthrough and Nonsense Mediated Decay. Int J Mol Sci 2020; 21:ijms21031085. [PMID: 32041247 PMCID: PMC7037193 DOI: 10.3390/ijms21031085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/21/2023] Open
Abstract
The DEAD-box protein Dbp5 (human DDX19) remodels RNA-protein complexes. Dbp5 functions in ribonucleoprotein export and translation termination. Termination occurs, when the ribosome has reached a stop codon through the Dbp5 mediated delivery of the eukaryotic termination factor eRF1. eRF1 contacts eRF3 upon dissociation of Dbp5, resulting in polypeptide chain release and subsequent ribosomal subunit splitting. Mutations in DBP5 lead to stop codon readthrough, because the eRF1 and eRF3 interaction is not controlled and occurs prematurely. This identifies Dbp5/DDX19 as a possible potent drug target for nonsense suppression therapy. Neurodegenerative diseases and cancer are caused in many cases by the loss of a gene product, because its mRNA contained a premature termination codon (PTC) and is thus eliminated through the nonsense mediated decay (NMD) pathway, which is described in the second half of this review. We discuss translation termination and NMD in the light of Dbp5/DDX19 and subsequently speculate on reducing Dbp5/DDX19 activity to allow readthrough of the PTC and production of a full-length protein to detract the RNA from NMD as a possible treatment for diseases.
Collapse
|
6
|
Kim YK, Maquat LE. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA (NEW YORK, N.Y.) 2019; 25:407-422. [PMID: 30655309 PMCID: PMC6426291 DOI: 10.1261/rna.070136.118] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nonsense-mediated mRNA decay (NMD), which is arguably the best-characterized translation-dependent regulatory pathway in mammals, selectively degrades mRNAs as a means of post-transcriptional gene control. Control can be for the purpose of ensuring the quality of gene expression. Alternatively, control can facilitate the adaptation of cells to changes in their environment. The key to NMD, no matter what its purpose, is the ATP-dependent RNA helicase upstream frameshift 1 (UPF1), without which NMD fails to occur. However, UPF1 does much more than regulate NMD. As examples, UPF1 is engaged in functionally diverse mRNA decay pathways mediated by a variety of RNA-binding proteins that include staufen, stem-loop-binding protein, glucocorticoid receptor, and regnase 1. Moreover, UPF1 promotes tudor-staphylococcal/micrococcal-like nuclease-mediated microRNA decay. In this review, we first focus on how the NMD machinery recognizes an NMD target and triggers mRNA degradation. Next, we compare and contrast the mechanisms by which UPF1 functions in the decay of other mRNAs and also in microRNA decay. UPF1, as a protein polymath, engenders cells with the ability to shape their transcriptome in response to diverse biological and physiological needs.
Collapse
Affiliation(s)
- Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
7
|
Dai Y, Li W, An L. NMD mechanism and the functions of Upf proteins in plant. PLANT CELL REPORTS 2016; 35:5-15. [PMID: 26400685 DOI: 10.1007/s00299-015-1867-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated decay (NMD) mechanism, also called mRNA surveillance, is a universal mRNA degradation pathway in eukaryotes. Hundreds of genes can be regulated by NMD whether in single-celled or higher organisms. There have been many studies on NMD and NMD factors (Upf proteins) with regard to their crucial roles in mRNA decay, especially in mammals and yeast. However, research focusing on NMD in plant is still lacking compared to the research that has been dedicated to NMD in mammals and yeast. Even so, recent study has shown that NMD factors in Arabidopsis can provide resistance against biotic and abiotic stresses. This discovery and its associated developments have given plant NMD mechanism a new outlook and since then, more and more research has focused on this area. In this review, we focused mainly on the distinctive NMD micromechanism and functions of Upf proteins in plant with references to the role of mRNA surveillance in mammals and yeast. We also highlighted recent insights into the roles of premature termination codon location, trans-elements and functions of other NMD factors to emphasize the particularity of plant NMD. Furthermore, we also discussed conventional approaches and neoteric methods used in plant NMD researches.
Collapse
Affiliation(s)
- Yiming Dai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| | - Wenli Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| |
Collapse
|
8
|
Haldar S, Roy A, Banerjee S. Differential regulation of MCM7 and its intronic miRNA cluster miR-106b-25 during megakaryopoiesis induced polyploidy. RNA Biol 2015; 11:1137-47. [PMID: 25483046 DOI: 10.4161/rna.36136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Megakaryocytes exit from mitotic cell cycle and enter a phase of repeated DNA replication without undergoing cell division, in a process termed as endomitosis of which little is known. We studied the expression of a DNA replication licensing factor mini chromosome maintenance protein 7 (MCM7) and its intronic miR-106b-25 cluster during mitotic and endo-mitotic cycles in megakaryocytic cell lines and in vitro cultured megakaryocytes obtained from human cord blood derived CD34(+) cells. Our results show that contrary to mitotic cell cycle, endomitosis proceeds with an un-coupling of the expression of MCM7 and miR-106b-25. This was attributed to the presence of a transcript variant of MCM7 which undergoes nonsense mediated decay (NMD). Additionally, miR-25 which was up regulated during endomitosis was found to promote megakaryopoiesis by inhibiting the expression of PTEN. Our study thus highlights the importance of a transcript variant of MCM7 destined for NMD in the modulation of megakaryopoiesis.
Collapse
Affiliation(s)
- Srijan Haldar
- a Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics ; Kolkata , India
| | | | | |
Collapse
|
9
|
Sangith N, Srinivasaraghavan K, Sahu I, Desai A, Medipally S, Somavarappu AK, Verma C, Venkatraman P. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules. FEBS Open Bio 2014; 4:571-83. [PMID: 25009770 PMCID: PMC4087146 DOI: 10.1016/j.fob.2014.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/21/2022] Open
Abstract
The structure and functions of PSMD9, a proteasomal chaperone, are uncharacterized. PDZ-like domain of PSMD9 may recognize C-terminal residues in proteins. Using conserved C-terminal motifs in human proteome, we identify novel binding partners. hnRNPA1, GH, IL6-receptor, S14 and E12 interact with PSMD9 via a specific C-terminal motif. We predict and confirm residues in the PDZ domain that are involved in this interaction.
PSMD9 (Proteasome Macropain non-ATPase subunit 9), a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a) proteins with conserved C-termini may share common functions and (b) PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein), S14 (a ribosomal protein), CSH1 (a growth hormone), E12 (a transcription factor) and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM) at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions.
Collapse
Affiliation(s)
- Nikhil Sangith
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Kannan Srinivasaraghavan
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; Experimental Therapeutics Centre (A*STAR), 31 Biopolis Street, #03-01 Helios, Singapore 138669, Singapore
| | - Indrajit Sahu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Ankita Desai
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Spandana Medipally
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Arun Kumar Somavarappu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Chandra Verma
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore ; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Prasanna Venkatraman
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| |
Collapse
|
10
|
Abstract
UPF1 (up-frameshift 1) is a protein conserved in all eukaryotes that is necessary for NMD (nonsense-mediated mRNA decay). UPF1 mainly localizes to the cytoplasm and, via mechanisms that are linked to translation termination but not yet well understood, stimulates rapid destruction of mRNAs carrying a PTC (premature translation termination codon). However, some studies have indicated that in human cells UPF1 has additional roles, possibly unrelated to NMD, which are carried out in the nucleus. These might involve telomere maintenance, cell cycle progression and DNA replication. In the present paper, we review the available experimental evidence implicating UPF1 in nuclear functions. The unexpected view that emerges from this literature is that the nuclear functions primarily stem from UPF1 having an important role in DNA replication, rather than NMD affecting the expression of proteins involved in these processes. Our bioinformatics survey of the interaction network of UPF1 with other human proteins, however, highlights that UPF1 also interacts with proteins associated with nuclear RNA degradation and transcription termination; therefore suggesting involvement in processes that could also impinge on DNA replication indirectly.
Collapse
|
11
|
Trarbach EB, Abreu AP, Silveira LFG, Garmes HM, Baptista MTM, Teles MG, Costa EMF, Mohammadi M, Pitteloud N, Mendonca BB, Latronico AC. Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency. J Clin Endocrinol Metab 2010; 95:3491-6. [PMID: 20463092 PMCID: PMC3213864 DOI: 10.1210/jc.2010-0176] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT FGFR1 mutations cause isolated hypogonadotropic hypogonadism (IHH) with or without olfactory abnormalities, Kallmann syndrome, and normosmic IHH respectively. Recently, missense mutations in FGF8, a key ligand for fibroblast growth factor receptor (FGFR) 1 in the ontogenesis of GnRH, were identified in IHH patients, thus establishing FGF8 as a novel locus for human GnRH deficiency. OBJECTIVE Our objective was to analyze the clinical, hormonal, and molecular findings of two familial IHH patients due to FGF8 gene mutations. METHODS AND PATIENTS The entire coding region of the FGF8 gene was amplified and sequenced in two well-phenotyped IHH probands and their relatives. RESULTS Two unique heterozygous nonsense mutations in FGF8 (p.R127X and p.R129X) were identified in two unrelated IHH probands, which were absent in 150 control individuals. These two mutations, mapped to the core domain of FGF8, impact all four human FGF8 isoforms, and lead to the deletion of a large portion of the protein, generating nonfunctional FGF8 ligands. The p.R127X mutation was identified in an 18-yr-old Kallmann syndrome female. Her four affected siblings with normosmic IHH or delayed puberty also carried the p.R127X mutation. Additional developmental anomalies, including cleft lip and palate and neurosensorial deafness, were also present in this family. The p.R129X mutation was identified in a 30-yr-old man with familial normosmic IHH and severe GnRH deficiency. CONCLUSIONS We identified the first nonsense mutations in the FGF8 gene in familial IHH with variable degrees of GnRH deficiency and olfactory phenotypes, confirming that loss-of-function mutations in FGF8 cause human GnRH deficiency.
Collapse
Affiliation(s)
- Ericka B Trarbach
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 da Disciplina de Endocrinologia do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900, São Paulo, Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dunham I, Beare DM, Collins JE. The characteristics of human genes: analysis of human chromosome 22. Comp Funct Genomics 2010; 4:635-46. [PMID: 18629020 PMCID: PMC2447302 DOI: 10.1002/cfg.335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 09/04/2003] [Accepted: 09/08/2003] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ian Dunham
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | |
Collapse
|
13
|
Squires JE, Stoytchev I, Forry EP, Berry MJ. SBP2 binding affinity is a major determinant in differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay. Mol Cell Biol 2007; 27:7848-55. [PMID: 17846120 PMCID: PMC2169151 DOI: 10.1128/mcb.00793-07] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 05/30/2007] [Accepted: 08/29/2007] [Indexed: 01/23/2023] Open
Abstract
Selenoprotein mRNAs are potential targets for degradation via nonsense-mediated decay due to the presence of in-frame UGA codons that can be decoded as either selenocysteine or termination codons. When UGA decoding is inefficient, as occurs when selenium is limiting, termination occurs at these positions. Based on the predicted exon-intron structure, 14 of the 25 human selenoprotein mRNAs are predicted to be sensitive to nonsense-mediated decay. Among these, sensitivity varies widely, resulting in a hierarchy of preservation or degradation of selenoprotein mRNAs and, thus, of selenoprotein synthesis. Potential factors in dictating the hierarchy of selenoprotein synthesis are the Sec insertion sequence RNA-binding proteins, SBP2 and nucleolin. To investigate the mechanistic basis for this hierarchy and the role of these two proteins, we carried out knockdowns of SBP2 expression and assessed the effects on selenoprotein mRNA levels. We also investigated in vivo binding of selenoprotein mRNAs by SBP2 and nucleolin via immunoprecipitation of the proteins and quantitation of bound mRNAs. We report that SBP2 exhibits strong preferential binding to some selenoprotein mRNAs over others, whereas nucleolin exhibits minimal differences in binding. Thus, SBP2 is a major determinant in dictating the hierarchy of selenoprotein synthesis via differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay.
Collapse
Affiliation(s)
- Jeffrey E Squires
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | | | | | | |
Collapse
|
14
|
Jønson L, Vikesaa J, Krogh A, Nielsen LK, Hansen TVO, Borup R, Johnsen AH, Christiansen J, Nielsen FC. Molecular composition of IMP1 ribonucleoprotein granules. Mol Cell Proteomics 2007; 6:798-811. [PMID: 17289661 DOI: 10.1074/mcp.m600346-mcp200] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Localized mRNAs are transported to sites of local protein synthesis in large ribonucleoprotein (RNP) granules, but their molecular composition is incompletely understood. Insulin-like growth factor II mRNA-binding protein (IMP) zip code-binding proteins participate in mRNA localization, and in motile cells IMP-containing granules are dispersed around the nucleus and in cellular protrusions. We isolated the IMP1-containing RNP granules and found that they represent a unique RNP entity distinct from neuronal hStaufen and/or fragile X mental retardation protein granules, processing bodies, and stress granules. Granules were 100-300 nm in diameter and consisted of IMPs, 40 S ribosomal subunits, shuttling heterologous nuclear RNPs, poly(A)-binding proteins, and mRNAs. Moreover granules contained CBP80 and factors belonging to the exon junction complex and lacked eIF4E, eIF4G, and 60 S ribosomal subunits, indicating that embodied mRNAs are not translated. Granules embodied mRNAs corresponding to about 3% of the human embryonic kidney 293 mRNA transcriptome. Messenger RNAs encoding proteins participating in the secretory pathway and endoplasmic reticulum-associated quality control, as well as ubiquitin-dependent metabolism, were enriched in the granules, reinforcing the concept of RNP granules as post-transcriptional operons.
Collapse
Affiliation(s)
- Lars Jønson
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang W, Cajigas IJ, Peltz SW, Wilkinson MF, González CI. Role for Upf2p phosphorylation in Saccharomyces cerevisiae nonsense-mediated mRNA decay. Mol Cell Biol 2006; 26:3390-400. [PMID: 16611983 PMCID: PMC1447418 DOI: 10.1128/mcb.26.9.3390-3400.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Premature termination (nonsense) codons trigger rapid mRNA decay by the nonsense-mediated mRNA decay (NMD) pathway. Two conserved proteins essential for NMD, UPF1 and UPF2, are phosphorylated in higher eukaryotes. The phosphorylation and dephosphorylation of UPF1 appear to be crucial for NMD, as blockade of either event in Caenorhabditis elegans and mammals largely prevents NMD. The universality of this phosphorylation/dephosphorylation cycle pathway has been questioned, however, because the well-studied Saccharomyces cerevisiae NMD pathway has not been shown to be regulated by phosphorylation. Here, we used in vitro and in vivo biochemical techniques to show that both S. cerevisiae Upf1p and Upf2p are phosphoproteins. We provide evidence that the phosphorylation of the N-terminal region of Upf2p is crucial for its interaction with Hrp1p, an RNA-binding protein that we previously showed is essential for NMD. We identify specific amino acids in Upf2p's N-terminal domain, including phosphorylated serines, which dictate both its interaction with Hrp1p and its ability to elicit NMD. Our results indicate that phosphorylation of UPF1 and UPF2 is a conserved event in eukaryotes and for the first time provide evidence that Upf2p phosphorylation is crucial for NMD.
Collapse
Affiliation(s)
- Weirong Wang
- Department of Biology, University of Puerto Rico, San Juan, PR 00931
| | | | | | | | | |
Collapse
|
16
|
Abstract
Studies of nonsense-mediated mRNA decay in mammalian cells have proffered unforeseen insights into changes in mRNA-protein interactions throughout the lifetime of an mRNA. Remarkably, mRNA acquires a complex of proteins at each exon-exon junction during pre-mRNA splicing that influences the subsequent steps of mRNA translation and nonsense-mediated mRNA decay. Complex-loaded mRNA is thought to undergo a pioneer round of translation when still bound by cap-binding proteins CBP80 and CBP20 and poly(A)-binding protein 2. The acquisition and loss of mRNA-associated proteins accompanies the transition from the pioneer round to subsequent rounds of translation, and from translational competence to substrate for nonsense-mediated mRNA decay.
Collapse
Affiliation(s)
- Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, New York 14642, USA.
| |
Collapse
|
17
|
Plant EP, Wang P, Jacobs JL, Dinman JD. A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element. Nucleic Acids Res 2004; 32:784-90. [PMID: 14762205 PMCID: PMC373365 DOI: 10.1093/nar/gkh256] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) directs rapid degradation of premature termination codon (PTC)-containing mRNAs, e.g. those containing frameshift mutations. Many viral mRNAs encode polycistronic messages where programmed -1 ribosomal frameshift (-1 PRF) signals direct ribosomes to synthesize polyproteins. A previous study, which identified consensus -1 PRF signals in the yeast genome, found that, in contrast to viruses, the majority of predicted -1 PRF events would direct translating ribosomes to PTCs. Here we tested the hypothesis that a -1 PRF signal can function as a cis-acting mRNA destabilizing element by inserting an L-A viral -1 PRF signal into a PGK1 reporter construct in the 'genomic' orientation. The results show that even low levels of -1 PRF are sufficient to target the reporter mRNA for degradation via the NMD pathway, with half-lives similar to messages containing in-frame PTCs. The demonstration of an inverse correlation between frameshift efficiency and mRNA half-lives suggests that modulation of -1 PRF frequencies can be used to post-transcriptionally regulate gene expression. Analysis of the mRNA decay profiles of the frameshift-signal- containing reporter mRNAs also supports the notion that NMD remains active on mRNAs beyond the 'pioneer round' of translation in yeast.
Collapse
MESH Headings
- Codon, Nonsense/genetics
- Frameshifting, Ribosomal/genetics
- Genes, Fungal/genetics
- Genes, Reporter/genetics
- Half-Life
- Models, Genetic
- Polyproteins/genetics
- RNA Stability
- RNA Transport
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Ribonucleic Acid/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
Collapse
Affiliation(s)
- Ewan P Plant
- Department of Cell Biology and Molecular Genetics, Microbiology Building Room 2135, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
18
|
Lykke-Andersen J. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 2002; 22:8114-21. [PMID: 12417715 PMCID: PMC134073 DOI: 10.1128/mcb.22.23.8114-8121.2002] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 08/19/2002] [Accepted: 09/10/2002] [Indexed: 12/31/2022] Open
Abstract
Decapping is a key step in general and regulated mRNA decay. In Saccharomyces cerevisiae it constitutes a rate-limiting step in the nonsense-mediated decay pathway that rids cells of mRNAs containing premature termination codons. Here two human decapping enzymes are identified, hDcp1a and hDcp2, as well as a homolog of hDcp1a, termed hDcp1b. Transiently expressed hDcp1a and hDcp2 proteins localize primarily to the cytoplasm and form a complex in human cell extracts. hDcp1a and hDcp2 copurify with decapping activity, an activity sensitive to mutation of critical hDcp residues. Importantly, coimmunoprecipitation assays demonstrate that hDcp1a and hDcp2 interact with the nonsense-mediated decay factor hUpf1, both in the presence and in the absence of the other hUpf proteins, hUpf2, hUpf3a, and hUpf3b. These data suggest that a human decapping complex may be recruited to mRNAs containing premature termination codons by the hUpf proteins.
Collapse
Affiliation(s)
- Jens Lykke-Andersen
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|