1
|
Colón EM, Haddock LA, Lasalde C, Lin Q, Ramírez-Lugo JS, González CI. Characterization of the mIF4G Domains in the RNA Surveillance Protein Upf2p. Curr Issues Mol Biol 2023; 46:244-261. [PMID: 38248319 PMCID: PMC10814901 DOI: 10.3390/cimb46010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Thirty percent of all mutations causing human disease generate mRNAs with premature termination codons (PTCs). Recognition and degradation of these PTC-containing mRNAs is carried out by the mechanism known as nonsense-mediated mRNA decay (NMD). Upf2 is a scaffold protein known to be a central component of the NMD surveillance pathway. It harbors three middle domains of eukaryotic initiation factor 4G (mIF4G-1, mIF4G-2, mIF4G-3) in its N-terminal region that are potentially important in regulating the surveillance pathway. In this study, we defined regions within the mIF4G-1 and mIF4G-2 that are required for proper function of Upf2p in NMD and translation termination in Saccharomyces cerevisiae. In addition, we narrowed down the activity of these regions to an aspartic acid (D59) in mIF4G-1 that is important for NMD activity and translation termination accuracy. Taken together, these studies suggest that inherently charged residues within mIF4G-1 of Upf2p play a role in the regulation of the NMD surveillance mechanism in S. cerevisiae.
Collapse
Affiliation(s)
- Edgardo M. Colón
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Luis A. Haddock
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Clarivel Lasalde
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
| | - Qishan Lin
- Department of Chemistry, University at Albany, Albany, NY 12222, USA;
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - Juan S. Ramírez-Lugo
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
| | - Carlos I. González
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| |
Collapse
|
2
|
Transcriptional regulation of RACK1 and modulation of its expression: Role of steroid hormones and significance in health and aging. Cell Signal 2017; 35:264-271. [DOI: 10.1016/j.cellsig.2017.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/27/2022]
|
3
|
Buoso E, Galasso M, Ronfani M, Papale A, Galbiati V, Eberini I, Marinovich M, Racchi M, Corsini E. The scaffold protein RACK1 is a target of endocrine disrupting chemicals (EDCs) with important implication in immunity. Toxicol Appl Pharmacol 2017; 325:37-47. [DOI: 10.1016/j.taap.2017.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/03/2017] [Accepted: 04/11/2017] [Indexed: 02/02/2023]
|
4
|
Palhais B, Dembic M, Sabaratnam R, Nielsen KS, Doktor TK, Bruun GH, Andresen BS. The prevalent deep intronic c. 639+919 G>A GLA mutation causes pseudoexon activation and Fabry disease by abolishing the binding of hnRNPA1 and hnRNP A2/B1 to a splicing silencer. Mol Genet Metab 2016; 119:258-269. [PMID: 27595546 DOI: 10.1016/j.ymgme.2016.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 11/21/2022]
Abstract
Fabry disease is an X-linked recessive inborn disorder of the glycosphingolipid metabolism, caused by total or partial deficiency of the lysosomal α-galactosidase A enzyme due to mutations in the GLA gene. The prevalent c.639+919 G>A mutation in GLA leads to pathogenic insertion of a 57bp pseudoexon sequence from intron 4, which is responsible for the cardiac variant phenotype. In this study we investigate the splicing regulatory mechanism leading to GLA pseudoexon activation. Splicing analysis of GLA minigenes revealed that pseudoexon activation is influenced by cell-type. We demonstrate that the wild-type sequence harbors an hnRNP A1 and hnRNP A2/B1-binding exonic splicing silencer (ESS) overlapping the 5'splice site (5'ss) that prevents pseudoexon inclusion. The c.639+919 G>A mutation disrupts this ESS allowing U1 snRNP recognition of the 5'ss. We show that the wild-type GLA 5'ss motif with the ESS is also able to inhibit inclusion of an unrelated pseudoexon in the FGB gene, and that also in the FGB context inactivation of the ESS by the c.639+919 G>A mutation causes pseudoexon activation, underscoring the universal nature of the ESS. Finally, we demonstrate that splice switching oligonucleotide (SSO) mediated blocking of the pseudoexon 3'ss and 5'ss effectively restores normal GLA splicing. This indicates that SSO based splicing correction may be a therapeutic alternative in the treatment of Fabry disease.
Collapse
Affiliation(s)
- Bruno Palhais
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Rugivan Sabaratnam
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Kira S Nielsen
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
5
|
Gould GM, Paggi JM, Guo Y, Phizicky DV, Zinshteyn B, Wang ET, Gilbert WV, Gifford DK, Burge CB. Identification of new branch points and unconventional introns in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2016; 22:1522-34. [PMID: 27473169 PMCID: PMC5029451 DOI: 10.1261/rna.057216.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/02/2016] [Indexed: 05/18/2023]
Abstract
Spliced messages constitute one-fourth of expressed mRNAs in the yeast Saccharomyces cerevisiae, and most mRNAs in metazoans. Splicing requires 5' splice site (5'SS), branch point (BP), and 3' splice site (3'SS) elements, but the role of the BP in splicing control is poorly understood because BP identification remains difficult. We developed a high-throughput method, Branch-seq, to map BPs and 5'SSs of isolated RNA lariats. Applied to S. cerevisiae, Branch-seq detected 76% of expressed, annotated BPs and identified a comparable number of novel BPs. We performed RNA-seq to confirm associated 3'SS locations, identifying some 200 novel splice junctions, including an AT-AC intron. We show that several yeast introns use two or even three different BPs, with effects on 3'SS choice, protein coding potential, or RNA stability, and identify novel introns whose splicing changes during meiosis or in response to stress. Together, these findings show unanticipated complexity of splicing in yeast.
Collapse
Affiliation(s)
- Genevieve M Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Joseph M Paggi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yuchun Guo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David V Phizicky
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Boris Zinshteyn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Eric T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Lasalde C, Rivera AV, León AJ, González-Feliciano JA, Estrella LA, Rodríguez-Cruz EN, Correa ME, Cajigas IJ, Bracho DP, Vega IE, Wilkinson MF, González CI. Identification and functional analysis of novel phosphorylation sites in the RNA surveillance protein Upf1. Nucleic Acids Res 2013; 42:1916-29. [PMID: 24198248 PMCID: PMC3919615 DOI: 10.1093/nar/gkt1049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One third of inherited genetic diseases are caused by mRNAs harboring premature termination codons as a result of nonsense mutations. These aberrant mRNAs are degraded by the Nonsense-Mediated mRNA Decay (NMD) pathway. A central component of the NMD pathway is Upf1, an RNA-dependent ATPase and helicase. Upf1 is a known phosphorylated protein, but only portions of this large protein have been examined for phosphorylation sites and the functional relevance of its phosphorylation has not been elucidated in Saccharomyces cerevisiae. Using tandem mass spectrometry analyses, we report the identification of 11 putative phosphorylated sites in S. cerevisiae Upf1. Five of these phosphorylated residues are located within the ATPase and helicase domains and are conserved in higher eukaryotes, suggesting a biological significance for their phosphorylation. Indeed, functional analysis demonstrated that a small carboxy-terminal motif harboring at least three phosphorylated amino acids is important for three Upf1 functions: ATPase activity, NMD activity and the ability to promote translation termination efficiency. We provide evidence that two tyrosines within this phospho-motif (Y-738 and Y-742) act redundantly to promote ATP hydrolysis, NMD efficiency and translation termination fidelity.
Collapse
Affiliation(s)
- Clarivel Lasalde
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, Department of Reproductive Medicine, University of California, San Diego, CA, Department of Biochemistry, University of Puerto Rico-Medical Sciences Campus, San Juan, PR and Molecular Sciences Research Building, San Juan, PR
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Although most mRNA molecules derived from protein-coding genes are destined to be translated into functional polypeptides, some are eliminated by cellular quality control pathways that collectively perform the task of mRNA surveillance. In the nonsense-mediated decay (NMD) pathway premature translation termination promotes the recruitment of a set of factors that destabilize a targeted mRNA. The same factors also seem to have key roles in repressing the translation of the mRNA, dissociating its terminating ribosome and messenger ribonucleoproteins (mRNPs), promoting the degradation of its truncated polypeptide product and possibly even feeding back to the site of transcription to interfere with splicing of the primary transcript.
Collapse
|
8
|
Hamid R, Cogan JD, Hedges LK, Austin E, Phillips JA, Newman JH, Loyd JE. Penetrance of pulmonary arterial hypertension is modulated by the expression of normal BMPR2 allele. Hum Mutat 2009; 30:649-54. [PMID: 19206171 DOI: 10.1002/humu.20922] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Familial pulmonary arterial hypertension (FPAH) is a progressive, fatal disease caused by mutations in the bone morphogenetic protein receptor type 2 gene (BMPR2). FPAH is inherited as an autosomal dominant trait, and shows incomplete penetrance in that many with BMPR2 mutations do not develop FPAH, suggesting a role for, as yet unidentified, modifier genes in disease penetrance. We hypothesized that variable levels of expression of the wild-type (WT) BMPR2 allele could act as a modifier and influence penetrance of FPAH. WT BMPR2 levels were determined by real-time PCR analysis in lymphoblastoid (LB) cell lines derived from normal controls and individuals with FPAH. The FPAH kindreds analyzed carried mutations that result in the activation of nonsense-mediated decay (NMD) pathway, which leads to the degradation of the mutant RNA, thus ensuring that only the WT BMPR2 transcripts will be detected in the real-time assay. Our data show that WT and mutant BMPR2 levels can be reproducibly measured in patient-derived LB cell lines, and that unaffected mutation carrier-derived LB cell lines have higher levels of WT BMPR2 transcripts than FPAH patient-derived LB cell lines (p<or=0.005). Our findings suggest that the levels of expression of WT BMPR2 allele transcripts is important in the pathogenesis of FPAH caused by NMD(+) mutations. Furthermore, our study illustrates a novel application of lymphoblastoid cell lines in the study of PAH, especially important because the affected site, that is, the lung, is not available for unaffected mutation carriers.
Collapse
Affiliation(s)
- Rizwan Hamid
- Department of Pediatrics, Division of Medical Genetics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Neu-Yilik G, Kulozik AE. NMD: multitasking between mRNA surveillance and modulation of gene expression. ADVANCES IN GENETICS 2008; 62:185-243. [PMID: 19010255 DOI: 10.1016/s0065-2660(08)00604-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression is a highly specific and regulated multilayer process with a plethora of interconnections as well as safeguard and feedback mechanisms. Messenger RNA, long neglected as a mere subcarrier of genetic information, is more recently recognized as a linchpin of regulation and control of gene expression. Moreover, the awareness of not only proteins but also mRNA as a modulator of genetic disorders has vastly increased in recent years. Nonsense-mediated mRNA decay (NMD) is a posttranscriptional surveillance mechanism that uses an intricate network of nuclear and cytoplasmic processes to eliminate mRNAs, containing premature termination codons. It thus helps limit the synthesis of potentially harmful truncated proteins. However, recent results suggest functions of NMD that go far beyond this role and affect the expression of wild-type genes and the modulation of whole pathways. In both respects--the elimination of faulty transcripts and the regulation of error-free mRNAs--NMD has many medical implications. Therefore, it has earned increasing interest from researchers of all fields of the life sciences. In the following text, we (1) present current knowledge about the NMD mechanism and its targets, (2) define its relevance in the regulation of important biochemical pathways, (3) explore its medical significance and the prospects of therapeutic interventions, and (4) discuss additional functions of NMD effectors, some of which may be networked to NMD. The main focus of this chapter lies on mammalian NMD and resorts to the features and factors of NMD in other organisms if these help to complete or illuminate the picture.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Andreas E Kulozik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Heneghan MN, Costa AMSB, Challen MP, Mills PR, Bailey A, Foster GD. A comparison of methods for successful triggering of gene silencing in Coprinus cinereus. Mol Biotechnol 2007; 35:283-96. [PMID: 17652792 DOI: 10.1007/bf02686014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/22/2022]
Abstract
Post-transcriptional gene-silencing methods (PTGS), including RNAi, are becoming increasingly pervasive in functional genomics. To advance analysis of the recently sequenced Coprinus cinereus genome, a high throughput gene silencing method is essential. We have exploited the GFP reporter gene to evaluate and quantify efficacy of three different silencing strategies. Modular constructs that encompassed antisense, untranslatable sense, and RNAi-mediating hairpin sequences, were transformed into a GFP-expressing host strain. Transformants exhibiting strong downregulation and partial suppression of GFP were recovered with all three constructs. Analyses of protein and transcriptional nucleic acids revealed that the antisense and hairpin sequences yielded similar levels of GFP suppression, and were both more efficient than untranslatable sense sequences. Our antisense vectors will expedite functional characterisation of C. cinereus and the modular nature of the constructs should permit exploitation of directional cDNA libraries for high throughput screening.
Collapse
Affiliation(s)
- Mary N Heneghan
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | | | | | | | | | | |
Collapse
|
11
|
Park NI, Muench DG. Biochemical and cellular characterization of the plant ortholog of PYM, a protein that interacts with the exon junction complex core proteins Mago and Y14. PLANTA 2007; 225:625-39. [PMID: 16953428 DOI: 10.1007/s00425-006-0385-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 08/14/2006] [Indexed: 05/05/2023]
Abstract
The exon junction complex (EJC) plays an important role in post-transcriptional control of gene expression. Mago nashi (Mago) and Y14 are core EJC proteins that operate as a functional unit in animal cells, and the Mago-Y14 heterodimer interacts with other EJC core and peripheral proteins. Little is known about the biochemical and cellular characteristics of the EJC and its orthologs in plants. Here, we demonstrate that Arabidopsis Mago and Y14 form a ternary complex with PYM, an RNA-binding protein that was previously shown to interact with the Mago-Y14 heterodimer in Drosophila. Fluorescence microscopy indicated that Arabidopsis Mago and Y14 are localized primarily in the nucleus, whereas PYM is mostly cytoplasmic. In vitro pull-down assays using recombinant proteins showed that the amino-terminal region of the Arabidopsis PYM interacts with the Mago-Y14 heterodimer, a similar observation to that previously reported for the animal versions of these proteins. However, we demonstrated also that Arabidopsis PYM has the ability to interact with monomeric Mago and monomeric Y14. Immunoprecipitation and tandem affinity purification from whole cell extracts detected a subtle interaction between the Arabidopsis Mago-Y14 heterodimer and PYM in flowers, indicating that the ternary complex is not abundant in plant cells. The regions of the polypeptide responsible for nuclear import and export were defined using protein truncations and site-directed mutagenesis. This study identifies unique characteristics of Arabidopsis Mago, Y14 and PYM compared to those observed in animal cells. These are predicted to have important functional implications associated with post-transcriptional regulation of gene expression in plant cells.
Collapse
Affiliation(s)
- Nam-il Park
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, CanadaT2N 1N4
| | | |
Collapse
|
12
|
Banihashemi L, Wilson GM, Das N, Brewer G. Upf1/Upf2 regulation of 3' untranslated region splice variants of AUF1 links nonsense-mediated and A+U-rich element-mediated mRNA decay. Mol Cell Biol 2006; 26:8743-54. [PMID: 17000771 PMCID: PMC1636803 DOI: 10.1128/mcb.02251-05] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AUF1 is an RNA-binding protein that targets mRNAs containing A+U-rich elements (AREs) for rapid cytoplasmic turnover. Alternative pre-mRNA splicing produces five variants of AUF1 mRNA that differ in the composition of their 3'-untranslated regions (3'-UTRs). Previous work suggested that this heterogeneity in 3'-UTR sequence could regulate AUF1 expression by two potential mechanisms. First, AUF1 may regulate its own expression by binding to AREs in 3'-UTR splice variants that retain intron 9. The second potential mechanism, and the focus of this report, is regulation of a subset of 3'-UTR splice variants by the nonsense-mediated mRNA decay (NMD) pathway. Two of the five AUF1 mRNA 3'-UTR variants position the translational termination codon more than 50 nucleotides upstream of an exon-exon junction, creating a potential triggering signal for NMD in mammalian cells. Disruption of cellular NMD pathways by RNA interference-mediated knockdown of Upf1/Rent1 or Upf2/Rent2 or transfection of a dominant-negative Upf1 mutant specifically enhanced expression of these two candidate NMD substrate mRNAs in cells, involving stabilization of each transcript. Ribonucleoprotein immunoprecipitation experiments revealed that both Upf1 and Upf2 can associate with an NMD-sensitive AUF1 mRNA 3'-UTR variant in cells. Finally, quantitation of AUF1 mRNA 3'-UTR splice variants during murine embryonic development showed that the expression of NMD-sensitive AUF1 mRNAs is specifically enhanced as development proceeds, contributing to dynamic changes in AUF1 3'-UTR structures during embryogenesis. Together, these studies provide the first evidence of linkage between the nonsense- and ARE-mediated mRNA decay pathways, which may constitute a new mechanism regulating the expression of ARE-containing mRNAs.
Collapse
Affiliation(s)
- Lili Banihashemi
- Department of Molecular Genetics, Microbiology & Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
13
|
Kallmeyer AK, Keeling KM, Bedwell DM. Eukaryotic release factor 1 phosphorylation by CK2 protein kinase is dynamic but has little effect on the efficiency of translation termination in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:1378-87. [PMID: 16896221 PMCID: PMC1539132 DOI: 10.1128/ec.00073-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/05/2006] [Indexed: 11/20/2022]
Abstract
Protein synthesis requires a large commitment of cellular resources and is highly regulated. Previous studies have shown that a number of factors that mediate the initiation and elongation steps of translation are regulated by phosphorylation. In this report, we show that a factor involved in the termination step of protein synthesis is also subject to phosphorylation. Our results indicate that eukaryotic release factor 1 (eRF1) is phosphorylated in vivo at serine 421 and serine 432 by the CK2 protein kinase (previously casein kinase II) in the budding yeast Saccharomyces cerevisiae. Phosphorylation of eRF1 has little effect on the efficiency of stop codon recognition or nonsense-mediated mRNA decay. Also, phosphorylation is not required for eRF1 binding to the other translation termination factor, eRF3. In addition, we provide evidence that the putative phosphatase Sal6p does not dephosphorylate eRF1 and that the state of eRF1 phosphorylation does not influence the allosuppressor phenotype associated with a sal6Delta mutation. Finally, we show that phosphorylation of eRF1 is a dynamic process that is dependent upon carbon source availability. Since many other proteins involved in protein synthesis have a CK2 protein kinase motif near their extreme C termini, we propose that this represents a common regulatory mechanism that is shared by factors involved in all three stages of protein synthesis.
Collapse
Affiliation(s)
- Adam K Kallmeyer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | |
Collapse
|
14
|
Cuccurese M, Russo G, Russo A, Pietropaolo C. Alternative splicing and nonsense-mediated mRNA decay regulate mammalian ribosomal gene expression. Nucleic Acids Res 2005; 33:5965-77. [PMID: 16254077 PMCID: PMC1270949 DOI: 10.1093/nar/gki905] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Messenger RNAs containing premature stop codons are generally targeted for degradation through nonsense-mediated mRNA decay (NMD). This mechanism degrades aberrant transcripts derived from mutant genes containing nonsense or frameshift mutations. Wild-type genes also give rise to transcripts targeted by NMD. For example, some wild-type genes give rise to alternatively spliced transcripts that are targeted for decay by NMD. In Caenorhabditis elegans, the ribosomal protein (rp) L12 gene generates a nonsense codon-bearing alternatively spliced transcript that is induced in an autoregulatory manner by the rpL12 protein. By pharmacologically blocking the NMD pathway, we identified alternatively spliced mRNA transcripts derived from the human rpL3 and rpL12 genes that are natural targets of NMD. The deduced protein sequence of these alternatively spliced transcripts suggests that they are unlikely to encode functional ribosomal proteins. Overexpression of rpL3 increased the level of the alternatively spliced rpL3 mRNA and decreased the normally expressed rpL3. This indicates that rpL3 regulates its own production by a negative feedback loop and suggests the possibility that NMD participates in this regulatory loop by degrading the non-functional alternatively spliced transcript.
Collapse
Affiliation(s)
| | | | | | - Concetta Pietropaolo
- To whom correspondence should be addressed. Tel: +39 081 7463065; Fax: +39 081 7463074;
| |
Collapse
|
15
|
Plant EP, Wang P, Jacobs JL, Dinman JD. A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element. Nucleic Acids Res 2004; 32:784-90. [PMID: 14762205 PMCID: PMC373365 DOI: 10.1093/nar/gkh256] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) directs rapid degradation of premature termination codon (PTC)-containing mRNAs, e.g. those containing frameshift mutations. Many viral mRNAs encode polycistronic messages where programmed -1 ribosomal frameshift (-1 PRF) signals direct ribosomes to synthesize polyproteins. A previous study, which identified consensus -1 PRF signals in the yeast genome, found that, in contrast to viruses, the majority of predicted -1 PRF events would direct translating ribosomes to PTCs. Here we tested the hypothesis that a -1 PRF signal can function as a cis-acting mRNA destabilizing element by inserting an L-A viral -1 PRF signal into a PGK1 reporter construct in the 'genomic' orientation. The results show that even low levels of -1 PRF are sufficient to target the reporter mRNA for degradation via the NMD pathway, with half-lives similar to messages containing in-frame PTCs. The demonstration of an inverse correlation between frameshift efficiency and mRNA half-lives suggests that modulation of -1 PRF frequencies can be used to post-transcriptionally regulate gene expression. Analysis of the mRNA decay profiles of the frameshift-signal- containing reporter mRNAs also supports the notion that NMD remains active on mRNAs beyond the 'pioneer round' of translation in yeast.
Collapse
MESH Headings
- Codon, Nonsense/genetics
- Frameshifting, Ribosomal/genetics
- Genes, Fungal/genetics
- Genes, Reporter/genetics
- Half-Life
- Models, Genetic
- Polyproteins/genetics
- RNA Stability
- RNA Transport
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Ribonucleic Acid/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
Collapse
Affiliation(s)
- Ewan P Plant
- Department of Cell Biology and Molecular Genetics, Microbiology Building Room 2135, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
16
|
Chin JW, Cropp TA, Chu S, Meggers E, Schultz PG. Progress toward an expanded eukaryotic genetic code. CHEMISTRY & BIOLOGY 2003; 10:511-9. [PMID: 12837384 DOI: 10.1016/s1074-5521(03)00123-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expanding the eukaryotic genetic code to include unnatural amino acids with novel properties would provide powerful tools for manipulating protein function in eukaryotic cells. Toward this goal, a general approach with potential for isolating aminoacyl-tRNA synthetases that incorporate unnatural amino acids with high fidelity into proteins in Saccharomyces cerevisiae is described. The method is based on activation of GAL4-responsive HIS3, URA3, or lacZ reporter genes by suppression of amber codons in GAL4. The optimization of GAL4 reporters is described, and the positive and negative selection of active Escherichia coli tyrosyl-tRNA synthetase (EcTyrRS)/tRNA(CUA) is demonstrated. Importantly, both selections can be performed on a single cell and with a range of stringencies. This method will facilitate the isolation of a range of aminoacyl-tRNA synthetase (aaRS)/tRNA(CUA) activities from large libraries of mutant synthetases.
Collapse
Affiliation(s)
- Jason W Chin
- Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|