1
|
Chandru K, Potiszil C, Jia TZ. Alternative Pathways in Astrobiology: Reviewing and Synthesizing Contingency and Non-Biomolecular Origins of Terrestrial and Extraterrestrial Life. Life (Basel) 2024; 14:1069. [PMID: 39337854 PMCID: PMC11433091 DOI: 10.3390/life14091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of understanding the origins of life (OoL) on and off Earth and the search for extraterrestrial life (ET) are central aspects of astrobiology. Despite the considerable efforts in both areas, more novel and multifaceted approaches are needed to address these profound questions with greater detail and with certainty. The complexity of the chemical milieu within ancient geological environments presents a diverse landscape where biomolecules and non-biomolecules interact. This interaction could lead to life as we know it, dominated by biomolecules, or to alternative forms of life where non-biomolecules could play a pivotal role. Such alternative forms of life could be found beyond Earth, i.e., on exoplanets and the moons of Jupiter and Saturn. Challenging the notion that all life, including ET life, must use the same building blocks as life on Earth, the concept of contingency-when expanded beyond its macroevolution interpretation-suggests that non-biomolecules may have played essential roles at the OoL. Here, we review the possible role of contingency and non-biomolecules at the OoL and synthesize a conceptual model formally linking contingency with non-biomolecular OoL theories. This model emphasizes the significance of considering the role of non-biomolecules both at the OoL on Earth or beyond, as well as their potential as agnostic biosignatures indicative of ET Life.
Collapse
Affiliation(s)
- Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43600, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Selangor 43600, Malaysia
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa 682-0193, Tottori, Japan
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku 152-8550, Tokyo, Japan
| |
Collapse
|
2
|
Pierce S. Life's Mechanism. Life (Basel) 2023; 13:1750. [PMID: 37629607 PMCID: PMC10455287 DOI: 10.3390/life13081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The multifarious internal workings of organisms are difficult to reconcile with a single feature defining a state of 'being alive'. Indeed, definitions of life rely on emergent properties (growth, capacity to evolve, agency) only symptomatic of intrinsic functioning. Empirical studies demonstrate that biomolecules including ratcheting or rotating enzymes and ribozymes undergo repetitive conformation state changes driven either directly or indirectly by thermodynamic gradients. They exhibit disparate structures, but govern processes relying on directional physical motion (DNA transcription, translation, cytoskeleton transport) and share the principle of repetitive uniplanar conformation changes driven by thermodynamic gradients, producing dependable unidirectional motion: 'heat engines' exploiting thermodynamic disequilibria to perform work. Recognition that disparate biological molecules demonstrate conformation state changes involving directional motion, working in self-regulating networks, allows a mechanistic definition: life is a self-regulating process whereby matter undergoes cyclic, uniplanar conformation state changes that convert thermodynamic disequilibria into directed motion, performing work that locally reduces entropy. 'Living things' are structures including an autonomous network of units exploiting thermodynamic gradients to drive uniplanar conformation state changes that perform work. These principles are independent of any specific chemical environment, and can be applied to other biospheres.
Collapse
Affiliation(s)
- Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
3
|
Halpern A, Bartsch LR, Ibrahim K, Harrison SA, Ahn M, Christodoulou J, Lane N. Biophysical Interactions Underpin the Emergence of Information in the Genetic Code. Life (Basel) 2023; 13:1129. [PMID: 37240774 PMCID: PMC10221087 DOI: 10.3390/life13051129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
The genetic code conceals a 'code within the codons', which hints at biophysical interactions between amino acids and their cognate nucleotides. Yet, research over decades has failed to corroborate systematic biophysical interactions across the code. Using molecular dynamics simulations and NMR, we have analysed interactions between the 20 standard proteinogenic amino acids and 4 RNA mononucleotides in 3 charge states. Our simulations show that 50% of amino acids bind best with their anticodonic middle base in the -1 charge state common to the backbone of RNA, while 95% of amino acids interact most strongly with at least 1 of their codonic or anticodonic bases. Preference for the cognate anticodonic middle base was greater than 99% of randomised assignments. We verify a selection of our results using NMR, and highlight challenges with both techniques for interrogating large numbers of weak interactions. Finally, we extend our simulations to a range of amino acids and dinucleotides, and corroborate similar preferences for cognate nucleotides. Despite some discrepancies between the predicted patterns and those observed in biology, the existence of weak stereochemical interactions means that random RNA sequences could template non-random peptides. This offers a compelling explanation for the emergence of genetic information in biology.
Collapse
Affiliation(s)
- Aaron Halpern
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Lilly R. Bartsch
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Kaan Ibrahim
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Stuart A. Harrison
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Minkoo Ahn
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology (ISMB), University College London, London WC1E 6BT, UK
| | - John Christodoulou
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology (ISMB), University College London, London WC1E 6BT, UK
| | - Nick Lane
- UCL Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
4
|
Wrist A, Sun W, Summers RM. The Theophylline Aptamer: 25 Years as an Important Tool in Cellular Engineering Research. ACS Synth Biol 2020; 9:682-697. [PMID: 32142605 DOI: 10.1021/acssynbio.9b00475] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The theophylline aptamer was isolated from an oligonucleotide library in 1994. Since that time, the aptamer has found wide utility, particularly in synthetic biology, cellular engineering, and diagnostic applications. The primary application of the theophylline aptamer is in the construction and characterization of synthetic riboswitches for regulation of gene expression. These riboswitches have been used to control cellular motility, regulate carbon metabolism, construct logic gates, screen for mutant enzymes, and control apoptosis. Other applications of the theophylline aptamer in cellular engineering include regulation of RNA interference and genome editing through CRISPR systems. Here we describe the uses of the theophylline aptamer for cellular engineering over the past 25 years. In so doing, we also highlight important synthetic biology applications to control gene expression in a ligand-dependent manner.
Collapse
Affiliation(s)
- Alexandra Wrist
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Wanqi Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ryan M. Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
5
|
Huck J, Kosikova T, Philp D. Compositional Persistence in a Multicyclic Network of Synthetic Replicators. J Am Chem Soc 2019; 141:13905-13913. [PMID: 31403776 DOI: 10.1021/jacs.9b06697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The emergence of collections of simple chemical entities that create self-sustaining reaction networks, embedding replication and catalysis, is cited as a potential mechanism for the appearance on the early Earth of systems that satisfy minimal definitions of life. In this work, a functional reaction network that creates and maintains a set of privileged replicator structures through auto- and cross-catalyzed reaction cycles is created from the pairwise combinations of four reagents. We show that the addition of individual preformed templates to this network, representing instructions to synthesize a specific replicator, induces changes in the output composition of the system that represent a network-level response. Further, we establish through sets of serial transfer experiments that the catalytic connections that exist between the four replicators in this network and the system-level behavior thereby encoded impose limits on the compositional variability that can be induced by repeated exposure to instructional inputs, in the form of preformed templates, to the system. The origin of this persistence is traced through kinetic simulations to the properties and inter-relationships between the critical ternary complexes formed by the auto- and crosscatalytic templates. These results demonstrate that in an environment where there is no continuous selection pressure the network connectivity, described by the catalytic relationships and system-level interactions between the replicators, is persistent, thereby limiting the ability of this network to adapt and evolve.
Collapse
Affiliation(s)
- Jürgen Huck
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , U.K
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , U.K
| | - Douglas Philp
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , U.K
| |
Collapse
|
6
|
Savage JC, Shinde P, Bächinger HP, Davare MA, Shinde U. A ribose modification of Spinach aptamer accelerates lead(ii) cation association in vitro. Chem Commun (Camb) 2019; 55:5882-5885. [PMID: 31037281 DOI: 10.1039/c9cc01697j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spinach aptamer fluorescence requires formation of a tripartite complex composed of folded RNA, a GFP-like fluorophore, and selective cation coordination. 2'F pyrimidine modified Spinach has retained fluorescence, increased chemical stability, and accelerated cation association via increased G-quadruplex dynamics, thereby reducing readout time and enhancing Spinach utility for aqueous Pb2+ detection.
Collapse
Affiliation(s)
- Jonathan C Savage
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Pushkar Shinde
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA. and MSC181105, Emory University Main Campus, 1762 Clifton Rd, Atlanta, GA 30022, USA
| | - Hans Peter Bächinger
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA. and Research Department, Shriners Hospital, Portland, OR 97239, USA
| | - Monika A Davare
- Papé Pediatric Research Institute, Division of Pediatric Hematology/Oncology, Department of Pediatrics, Oregon Health & Sciences University, Portland, OR, USA
| | - Ujwal Shinde
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Villarreal LP, Witzany G. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann N Y Acad Sci 2019; 1447:5-20. [PMID: 30865312 DOI: 10.1111/nyas.14040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNA-mediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it could not function without these key agents of DNA replication, namely rRNA, tRNA, and mRNA. Thus, any definition of life that lacks RNA functions and their networks misses an essential requirement for RNA agents that inherently regulate and coordinate (communicate to) cells, tissues, organs, and organisms. The precellular evolution of RNAs occurred at the core of the emergence of cellular life and the question remained of how both precellular and cellular levels are interconnected historically and functionally. RNA networks and RNA communication can interconnect these levels. With the reemergence of virology in evolution, it became clear that communicating viruses and subviral infectious genetic parasites are bridging these two levels by invading, integrating, coadapting, exapting, and recombining constituent parts in host genomes for cellular requirements in gene regulation and coordination aims. Therefore, a 21st century understanding of life is of an inherently social process based on communicating RNA networks, in which viruses and cells continuously interact.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | |
Collapse
|
8
|
Rahman MM, Matsumura S, Ikawa Y. Oligomerization of a Bimolecular Ribozyme Modestly Rescues its Structural Defects that Disturb Interdomain Assembly to Form the Catalytic Site. J Mol Evol 2018; 86:431-442. [DOI: 10.1007/s00239-018-9862-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
|
9
|
Lepper CP, Williams MAK, Penny D, Edwards PJB, Jameson GB. Effects of Pressure and pH on the Hydrolysis of Cytosine: Implications for Nucleotide Stability around Deep-Sea Black Smokers. Chembiochem 2018; 19:540-544. [PMID: 29205716 DOI: 10.1002/cbic.201700555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 12/26/2022]
Abstract
The relatively low chemical stability of cytosine compared with other nucleobases is a key concern in origin-of-life scenarios, but the effect of pressure on the rate of hydrolysis of cytosine to uracil remains unknown. Through in situ NMR spectroscopy measurements, it has been determined that the half-life of cytosine at 373.15 K decreases from (18.0±0.7) days at ambient pressure (0.1 MPa) to (8.64±0.18) days at high pressure (200 MPa). This yields an activation volume for hydrolysis of (-11.8±0.5) cm3 mol-1 ; a decrease that is similar to the molar volume of water (18.0 cm3 mol-1 ) and consistent with a tetrahedral 3,3-hydroxyamine transition-state/intermediate species. Similar behaviour was also observed for cytidine. At both ambient and high pressures, the half-life of cytosine decreases significantly as the pH decreases from 7.0 to 6.0. These results provide scant support for the notion that RNA-based life forms originated in high-temperature, high-pressure, acidic environments.
Collapse
Affiliation(s)
- Christopher P Lepper
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Martin A K Williams
- Institute of Fundamental Sciences, The MacDiarmid Institute and the Riddet Institute, Massey University, Palmerston North, Manawatu, 4442, New Zealand
| | - David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Patrick J B Edwards
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Geoffrey B Jameson
- Institute of Fundamental Sciences, The MacDiarmid Institute and the Riddet Institute, Massey University, Palmerston North, Manawatu, 4442, New Zealand
| |
Collapse
|
10
|
Synthesis and photophysical characterization of luminescent lanthanide complexes of nucleotide-functionalized cyclen- and dipicolinate-based ligands. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.07.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Bregestovski PD. “RNA World”, a highly improbable scenario of the origin and early evolution of life on earth. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015010111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ivica NA, Obermayer B, Campbell GW, Rajamani S, Gerland U, Chen IA. The Paradox of Dual Roles in the RNA World: Resolving the Conflict Between Stable Folding and Templating Ability. J Mol Evol 2013; 77:55-63. [DOI: 10.1007/s00239-013-9584-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
|
13
|
Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. Experimental evolution. Trends Ecol Evol 2012; 27:547-60. [PMID: 22819306 DOI: 10.1016/j.tree.2012.06.001] [Citation(s) in RCA: 505] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/03/2012] [Accepted: 06/13/2012] [Indexed: 12/26/2022]
Abstract
Experimental evolution is the study of evolutionary processes occurring in experimental populations in response to conditions imposed by the experimenter. This research approach is increasingly used to study adaptation, estimate evolutionary parameters, and test diverse evolutionary hypotheses. Long applied in vaccine development, experimental evolution also finds new applications in biotechnology. Recent technological developments provide a path towards detailed understanding of the genomic and molecular basis of experimental evolutionary change, while new findings raise new questions that can be addressed with this approach. However, experimental evolution has important limitations, and the interpretation of results is subject to caveats resulting from small population sizes, limited timescales, the simplified nature of laboratory environments, and, in some cases, the potential to misinterpret the selective forces and other processes at work.
Collapse
Affiliation(s)
- Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
14
|
Olbrich E, Achermann P, Wennekers T. The sleeping brain as a complex system. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:3697-3707. [PMID: 21893523 DOI: 10.1098/rsta.2011.0199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
'Complexity science' is a rapidly developing research direction with applications in a multitude of fields that study complex systems consisting of a number of nonlinear elements with interesting dynamics and mutual interactions. This Theme Issue 'The complexity of sleep' aims at fostering the application of complexity science to sleep research, because the brain in its different sleep stages adopts different global states that express distinct activity patterns in large and complex networks of neural circuits. This introduction discusses the contributions collected in the present Theme Issue. We highlight the potential and challenges of a complex systems approach to develop an understanding of the brain in general and the sleeping brain in particular. Basically, we focus on two topics: the complex networks approach to understand the changes in the functional connectivity of the brain during sleep, and the complex dynamics of sleep, including sleep regulation. We hope that this Theme Issue will stimulate and intensify the interdisciplinary communication to advance our understanding of the complex dynamics of the brain that underlies sleep and consciousness.
Collapse
Affiliation(s)
- Eckehard Olbrich
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany
| | | | | |
Collapse
|