1
|
Yuruk D, Ozger C, Garzon JF, Leffler JM, Shekunov J, Vande Voort JL, Zaccariello MJ, Nakonezny PA, Croarkin PE. Sequential bilateral accelerated theta burst stimulation in adolescents with suicidal ideation associated with major depressive disorder: Protocol for a randomized controlled trial. PLoS One 2023; 18:e0280010. [PMID: 37053246 PMCID: PMC10101506 DOI: 10.1371/journal.pone.0280010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/26/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Suicide is a leading cause of death in adolescents worldwide. Previous research findings suggest that suicidal adolescents with depression have pathophysiological dorsolateral prefrontal cortex (DLPFC) deficits in γ-aminobutyric acid neurotransmission. Interventions with transcranial magnetic stimulation (TMS) directly address these underlying pathophysiological deficits in the prefrontal cortex. Theta burst stimulation (TBS) is newer dosing approach for TMS. Accelerated TBS (aTBS) involves administering multiple sessions of TMS daily as this dosing may be more efficient, tolerable, and rapid acting than standard TMS. MATERIALS AND METHODS This is a randomized, double-blind, sham-controlled trial of sequential bilateral aTBS in adolescents with major depressive disorder (MDD) and suicidal ideation. Three sessions are administered daily for 10 days. During each session, continuous TBS is administered first to the right DPFC, in which 1,800 pulses are delivered continuously over 120 seconds. Then intermittent TBS is applied to the left DPFC, in which 1,800 pulses are delivered in 2-second bursts and repeated every 10 seconds for 570 seconds. The TBS parameters were adopted from prior research, with 3-pulse, 50-Hz bursts given every 200 ms (at 5 Hz) with an intensity of 80% active motor threshold. The comparison group will receive 3 daily sessions of bilateral sham TBS treatment for 10 days. All participants will receive the standard of care for patients with depression and suicidal ideation including daily psychotherapeutic skill sessions. Long-interval intracortical inhibition (LICI) biomarkers will be measured before and after treatment. Exploratory measures will be collected with TMS and electroencephalography for biomarker development. DISCUSSION This is the first known randomized controlled trial to examine the efficacy of sequential bilateral aTBS for treating suicidal ideation in adolescents with MDD. Results from this study will also provide opportunities to further understand the neurophysiological and molecular mechanisms of suicidal ideation in adolescents. TRIAL REGISTRATION Investigational device exemption (IDE) Number: G200220, ClinicalTrials.gov (ID: NCT04701840). Registered August 6, 2020. https://clinicaltrials.gov/ct2/show/NCT04502758?term=NCT04701840&draw=2&rank=1.
Collapse
Affiliation(s)
- Deniz Yuruk
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Can Ozger
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Juan F. Garzon
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jarrod M. Leffler
- Virginia Treatment Center for Children, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Julia Shekunov
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jennifer L. Vande Voort
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Children’s Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael J. Zaccariello
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Children’s Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Paul A. Nakonezny
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Children’s Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
2
|
Schiller CE, Walsh E, Eisenlohr-Moul TA, Prim J, Dichter GS, Schiff L, Bizzell J, Slightom SL, Richardson EC, Belger A, Schmidt P, Rubinow DR. Effects of gonadal steroids on reward circuitry function and anhedonia in women with a history of postpartum depression. J Affect Disord 2022; 314:176-184. [PMID: 35777494 PMCID: PMC9605402 DOI: 10.1016/j.jad.2022.06.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Reward system dysfunction is evident across neuropsychiatric conditions. Here we present data from a double-blinded pharmaco-fMRI study investigating the triggering of anhedonia and reward circuit activity in women. METHODS The hormonal states of pregnancy and parturition were simulated in euthymic women with a history of postpartum depression (PPD+; n = 15) and those without such a history (PPD-; n = 15) by inducing hypogonadism, adding back estradiol and progesterone for 8 weeks ("addback"), and then withdrawing both steroids ("withdrawal"). Anhedonia was assessed using the Inventory of Depression and Anxiety Symptoms (IDAS) during each hormone phase. Those who reported a 30 % or greater increase in IDAS anhedonia, dysphoria, or ill temper during addback or withdrawal, compared with pre-treatment, were identified as hormone sensitive (HS+) and all others were identified as non-hormone sensitive (HS-). The monetary incentive delay (MID) task was administered during fMRI sessions at pre-treatment and during hormone withdrawal to assess brain activation during reward anticipation and feedback. RESULTS On average, anhedonia increased during addback and withdrawal in PPD+ but not PPD-. During reward feedback, both HS+ (n = 10) and HS- (n = 18) showed decreased activation in clusters in the right putamen (p < .031, FWE-corrected) and left postcentral and supramarginal gyri (p < .014, FWE-corrected) at the withdrawal scans, relative to pre-treatment scans. LIMITATIONS A modest sample size, stringent exclusion criteria, and relative lack of diversity in study participants limit the generalizability of results. CONCLUSION Although results do not explain differential hormone sensitivity in depression, they demonstrate significant effects of reproductive hormones on reward-related brain function in women.
Collapse
Affiliation(s)
- C E Schiller
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America.
| | - E Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - T A Eisenlohr-Moul
- Department of Psychiatry, University of Illinois at Chicago, United States of America
| | - J Prim
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - G S Dichter
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - L Schiff
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - J Bizzell
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - S L Slightom
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | | | - A Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| | - P Schmidt
- National Institute of Mental Health, Behavioral Endocrinology Branch, United States of America
| | - D R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, United States of America
| |
Collapse
|
3
|
Suresh V, Mills JA, Croarkin PE, Strawn JR. What next? A Bayesian hierarchical modeling re-examination of treatments for adolescents with selective serotonin reuptake inhibitor-resistant depression. Depress Anxiety 2020; 37:926-934. [PMID: 32579280 PMCID: PMC7595266 DOI: 10.1002/da.23064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Psychiatrists frequently struggle with how to sequence treatment for depressed adolescents who do not respond to an adequate trial of a selective serotonin reuptake inhibitor (SSRI). This study leveraged recent statistical and computational advances to create Bayesian hierarchal models (BHMs) of response in the treatment of SSRI-resistant depression in adolescents study to inform treatment planning. METHODS BHMs of individual treatment trajectories were developed and estimated using Hamiltonian Monte Carlo no u-turn sampling. From the Monte Carlo pseudorandom sample, 95% credible intervals, means, posterior tail probabilities, and so forth, were determined. Then, for the random effects model, posterior tail probabilities were used to create Bayesian two-tailed p values to evaluate the null hypotheses: no difference in efficacy between SSRIs and venlafaxine. The robustness of the results was examined using the fixed effects model of treatment comparisons. RESULTS In patients not receiving cognitive behavioral therapy (CBT; n = 168), SSRIs produced greater and faster improvement in depressive symptoms compared to venlafaxine (p = .015). No differences in response or trajectory of response for symptoms of anxiety were detected between SSRIs and venlafaxine (p = .168). For patients receiving CBT (n = 162), SSRIs and venlafaxine produced similar improvements in symptoms of anxiety and depression. CONCLUSIONS Findings from this novel computational approach suggest that a second trial of an SSRI is warranted for depressed adolescents who fail to respond to initial SSRI treatment.
Collapse
Affiliation(s)
- Vikram Suresh
- Carl H. Lindner College of Business, University of Cincinnati, Cincinnati, Ohio 45221
| | - Jeffrey A. Mills
- Carl H. Lindner College of Business, University of Cincinnati, Cincinnati, Ohio 45221
| | - Paul E. Croarkin
- Mayo Clinic, Department of Psychiatry and Psychology, Rochester, MN
| | - Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219,Department of Pediatrics, Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45267
| |
Collapse
|
4
|
Kato T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci 2019; 73:526-540. [PMID: 31021488 DOI: 10.1111/pcn.12852] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Biological studies of bipolar disorder initially focused on the mechanism of action for antidepressants and antipsychotic drugs, and the roles of monoamines (e.g., serotonin, dopamine) have been extensively studied. Thereafter, based on the mechanism of action of lithium, intracellular signal transduction systems, including inositol metabolism and intracellular calcium signaling, have drawn attention. Involvement of intracellular calcium signaling has been supported by genetics and cellular studies. Elucidation of the neural circuits affected by calcium signaling abnormalities is critical, and our previous study suggested a role of the paraventricular thalamic nucleus. The genetic vulnerability of mitochondria causes calcium dysregulation and results in the hyperexcitability of serotonergic neurons, which are suggested to be susceptible to oxidative stress. Efficacy of anticonvulsants, animal studies of candidate genes, and studies using induced pluripotent stem cell-derived neurons have suggested a relation between bipolar disorder and the hyperexcitability of neurons. Recent genetic findings suggest the roles of polyunsaturated acids. At the systems level, social rhythm therapy targets circadian rhythm abnormalities, and cognitive behavioral therapy may target emotion/cognition (E/C) imbalance. In the future, pharmacological and psychosocial treatments may be combined and optimized based on the biological basis of each patient, which will realize individualized treatment.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
5
|
Kepecs A. Summary: Order and Disorder in Brains and Behavior. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:219-225. [PMID: 31358660 DOI: 10.1101/sqb.2018.83.038885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The 83rd Cold Spring Harbor Symposium on Quantitative Biology on Brains and Behavior: Order and Disorder in the Nervous System explored the tremendous recent progress in neuroscience and how these advances may be used to improve brain health and address psychiatric and neurological disorders. The Symposium explored a vast array of topics from cell types to cognition. My summary focuses on a few emerging themes. Innovative techniques were ever-present, opening up new experimental possibilities. The commoditization of many state-of-the-art technologies is pushing neuroscience beyond its artisanal ways. Another important theme was "circuits in the middle": Numerous presentations dissected cell type-specific circuits that connect different levels of analysis from molecules to behavior. These new technologies have enabled curiosity-driven investigations in animals to connect more directly with preclinical and clinical studies of human brain disorders. Numerous emerging approaches were presented in human neuroscience, bolstering the hope that circuit-specific manipulations will soon provide improved treatments for brain disorders.
Collapse
Affiliation(s)
- Adam Kepecs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|