1
|
Shukla S, Karbhari A, Rastogi S, Agarwal U, Rai P, Mahajan A. Bench-to-bedside imaging in brain metastases: a road to precision oncology. Clin Radiol 2024; 79:485-500. [PMID: 38637186 DOI: 10.1016/j.crad.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/20/2024]
Abstract
Radiology has seen tremendous evolution in the last few decades. At the same time, oncology has made great strides in diagnosing and treating cancer. Distant metastases of neoplasms are being encountered more often in light of longer patient survival due to better therapeutic strategies and diagnostic methods. Brain metastasis (BM) is a dismal manifestation of systemic cancer. In the present scenario, magnetic resonance imaging (MRI), computed tomography (CT) and positron emission tomography (PET) are playing a big role in providing molecular information about cancer. Lately, molecular imaging has emerged as a stirring arena of dynamic imaging techniques that have enabled clinicians and scientists to noninvasively visualize and understand biological processes at the cellular and molecular levels. This knowledge has impacted etiopathogenesis, detection, personalized treatment, drug development, and our understanding of carcinogenesis. This article offers insight into the molecular biology underlying brain metastasis, its pathogenesis, imaging protocols, and algorithms. It also discusses disease-specific molecular imaging features, focusing on common tumors that spread to the brain, such as lung, breast, colorectal cancer, melanoma, and renal cell carcinoma. Additionally, it covers various targeted treatment options, criteria for assessing treatment response, and the role of artificial intelligence in diagnosing, managing, and predicting prognosis for patients with brain metastases.
Collapse
Affiliation(s)
- S Shukla
- Department of Radiodiagnosis and Imaging, Mahamana Pandit Madan Mohan Malaviya Cancer Centre and Homi Bhabha Cancer Hospital, Tata Memorial Hospital, Varanasi, 221 005, Maharashtra, India; Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - A Karbhari
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - S Rastogi
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - U Agarwal
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - P Rai
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - A Mahajan
- Department of Imaging, The Clatterbridge Cancer Centre NHS Foundation Trust, L7 8YA Liverpool, UK; Faculty of Health and Life Sciences, University of Liverpool, L7 8TX, Liverpool, UK.
| |
Collapse
|
2
|
Abstract
Imaging of brain metastases (BMs) has advanced greatly over the past decade. In this review, we discuss the main challenges that BMs pose in clinical practice and describe the role of imaging.Firstly, we describe the increased incidence of BMs of different primary tumours and the rationale for screening. A challenge lies in selecting the right patients for screening: not all cancer patients develop BMs in their disease course.Secondly, we discuss the imaging techniques to detect BMs. A three-dimensional (3D) T1W MRI sequence is the golden standard for BM detection, but additional anatomical (susceptibility weighted imaging, diffusion weighted imaging), functional (perfusion MRI) and metabolic (MR spectroscopy, positron emission tomography) information can help to differentiate BMs from other intracranial aetiologies.Thirdly, we describe the role of imaging before, during and after treatment of BMs. For surgical resection, imaging is used to select surgical patients, but also to assist intraoperatively (neuronavigation, fluorescence-guided surgery, ultrasound). For treatment planning of stereotactic radiosurgery, MRI is combined with CT. For surveillance after both local and systemic therapies, conventional MRI is used. However, advanced imaging is increasingly performed to distinguish true tumour progression from pseudoprogression.FInally, future perspectives are discussed, including radiomics, new biomarkers, new endogenous contrast agents and theranostics.
Collapse
Affiliation(s)
- Sophie H A E Derks
- Department of Neuro-Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Astrid A M van der Veldt
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Gaebe K, Li AY, Das S. Clinical Biomarkers for Early Identification of Patients with Intracranial Metastatic Disease. Cancers (Basel) 2021; 13:cancers13235973. [PMID: 34885083 PMCID: PMC8656478 DOI: 10.3390/cancers13235973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The development of brain metastases, or intracranial metastatic disease (IMD), is a serious and life-altering complication for many patients with cancer. While there have been substantial advancements in the treatments available for IMD and in our understanding of its pathogenesis, conventional methods remain insufficient to detect IMD at an early stage. In this review, we discuss current research on biomarkers specific to IMD. In particular, we highlight biomarkers that can be easily accessed via the bloodstream or cerebrospinal fluid, including circulating tumor cells and DNA, as well as advanced imaging techniques. The continued development of these assays could enable clinicians to detect IMD prior to the development of IMD-associated symptoms and ultimately improve patient prognosis and survival. Abstract Nearly 30% of patients with cancer will develop intracranial metastatic disease (IMD), and more than half of these patients will die within a few months following their diagnosis. In light of the profound effect of IMD on survival and quality of life, there is significant interest in identifying biomarkers that could facilitate the early detection of IMD or identify patients with cancer who are at high IMD risk. In this review, we will highlight early efforts to identify biomarkers of IMD and consider avenues for future investigation.
Collapse
Affiliation(s)
- Karolina Gaebe
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
| | - Alyssa Y. Li
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
| | - Sunit Das
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence:
| |
Collapse
|
4
|
Zakaria R, Radon M, Mills S, Mitchell D, Palmieri C, Chung C, Jenkinson MD. The Role of the Immune Response in Brain Metastases: Novel Imaging Biomarkers for Immunotherapy. Front Oncol 2021; 11:711405. [PMID: 34765539 PMCID: PMC8577813 DOI: 10.3389/fonc.2021.711405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Brain metastases are a major clinical problem, and immunotherapy offers a novel treatment paradigm with the potential to synergize with existing focal therapies like surgery and radiosurgery or even replace them in future. The brain is a unique microenvironment structurally and immunologically. The immune response is likely to be crucial to the adaptation of systemic immune modulating agents against this disease. Imaging is frequently employed in the clinical diagnosis and management of brain metastasis, so it is logical that brain imaging techniques are investigated as a source of biomarkers of the immune response in these tumors. Current imaging techniques in clinical use include structural MRI (post-contrast T1W sequences, T2, and FLAIR), physiological sequences (perfusion- and diffusion-weighted imaging), and molecular imaging (MR spectroscopy and PET). These are reviewed for their application to predicting and measuring the response to immunotherapy in brain metastases.
Collapse
Affiliation(s)
- Rasheed Zakaria
- Department of Neurosurgery, University of Texas M.D.Anderson Cancer Center, Houston, TX, United States
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mark Radon
- Department of Radiology, Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Samantha Mills
- Department of Radiology, Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Drew Mitchell
- Department of Imaging Physics, University of Texas M.D.Anderson Cancer Center, Houston, TX, United States
| | - Carlo Palmieri
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Caroline Chung
- Department of Radiation Oncology, University of Texas M.D.Anderson Cancer Center, Houston, TX, United States
| | - Michael D. Jenkinson
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Neurosurgery, Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
5
|
Chakhoyan A, Raymond C, Chen J, Goldman J, Yao J, Kaprealian TB, Pouratian N, Ellingson BM. Probabilistic independent component analysis of dynamic susceptibility contrast perfusion MRI in metastatic brain tumors. Cancer Imaging 2019; 19:14. [PMID: 30885275 PMCID: PMC6423873 DOI: 10.1186/s40644-019-0201-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To identify clinically relevant magnetic resonance imaging (MRI) features of different types of metastatic brain lesions, including standard anatomical, diffusion weighted imaging (DWI) and dynamic susceptibility contrast (DSC) perfusion MRI. METHODS MRI imaging was retrospectively assessed on one hundred and fourteen (N = 114) brain metastases including breast (n = 27), non-small cell lung cancer (NSCLC, n = 43) and 'other' primary tumors (n = 44). Based on 114 patient's MRI scans, a total of 346 individual contrast enhancing tumors were manually segmented. In addition to tumor volume, apparent diffusion coefficients (ADC) and relative cerebral blood volume (rCBV) measurements, an independent component analysis (ICA) was performed with raw DSC data in order to assess arterio-venous components and the volume of overlap (AVOL) relative to tumor volume, as well as time to peak (TTP) of T2* signal from each component. RESULTS Results suggests non-breast or non-NSCLC ('other') tumors had higher volume compare to breast and NSCLC patients (p = 0.0056 and p = 0.0003, respectively). No differences in median ADC or rCBV were observed across tumor types; however, breast and NSCLC tumors had a significantly higher "arterial" proportion of the tumor volume as indicated by ICA (p = 0.0062 and p = 0.0018, respectively), while a higher "venous" proportion were prominent in breast tumors compared with NSCLC (p = 0.0027) and 'other' lesions (p = 0.0011). The AVOL component was positively related to rCBV in all groups, but no correlation was found for arterial and venous components with respect to rCBV values. Median time to peak of arterial and venous components were 8.4 s and 12.6 s, respectively (p < 0.0001). No difference was found in arterial or venous TTP across groups. CONCLUSIONS Advanced ICA-derived component analysis demonstrates perfusion differences between metastatic brain tumor types that were not observable with classical ADC and rCBV measurements. These results highlight the complex relationship between brain tumor vasculature characteristics and the site of primary tumor diagnosis.
Collapse
Affiliation(s)
- Ararat Chakhoyan
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA.,Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA.,Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Jason Chen
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jodi Goldman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA.,Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Tania B Kaprealian
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA. .,Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA. .,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA. .,UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Achrol AS, Rennert RC, Anders C, Soffietti R, Ahluwalia MS, Nayak L, Peters S, Arvold ND, Harsh GR, Steeg PS, Chang SD. Brain metastases. Nat Rev Dis Primers 2019; 5:5. [PMID: 30655533 DOI: 10.1038/s41572-018-0055-y] [Citation(s) in RCA: 646] [Impact Index Per Article: 107.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An estimated 20% of all patients with cancer will develop brain metastases, with the majority of brain metastases occurring in those with lung, breast and colorectal cancers, melanoma or renal cell carcinoma. Brain metastases are thought to occur via seeding of circulating tumour cells into the brain microvasculature; within this unique microenvironment, tumour growth is promoted and the penetration of systemic medical therapies is limited. Development of brain metastases remains a substantial contributor to overall cancer mortality in patients with advanced-stage cancer because prognosis remains poor despite multimodal treatments and advances in systemic therapies, which include a combination of surgery, radiotherapy, chemotherapy, immunotherapy and targeted therapies. Thus, interest abounds in understanding the mechanisms that drive brain metastases so that they can be targeted with preventive therapeutic strategies and in understanding the molecular characteristics of brain metastases relative to the primary tumour so that they can inform targeted therapy selection. Increased molecular understanding of the disease will also drive continued development of novel immunotherapies and targeted therapies that have higher bioavailability beyond the blood-tumour barrier and drive advances in radiotherapies and minimally invasive surgical techniques. As these discoveries and innovations move from the realm of basic science to preclinical and clinical applications, future outcomes for patients with brain metastases are almost certain to improve.
Collapse
Affiliation(s)
- Achal Singh Achrol
- Department of Neurosurgery and Neurosciences, John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA.
| | - Robert C Rennert
- Department of Neurosurgery, University of California-San Diego, San Diego, CA, USA.
| | - Carey Anders
- Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Manmeet S Ahluwalia
- Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Lakshmi Nayak
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Solange Peters
- Medical Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Nils D Arvold
- Department of Radiation Oncology, St. Luke's Cancer Center, Duluth, MN, USA
| | - Griffith R Harsh
- Department of Neurosurgery, University of California-Davis, School of Medicine, Sacramento, CA, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Center, Bethesda, MD, USA
| | - Steven D Chang
- Department of Neurosurgery, University of California-Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
7
|
Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2. Radiol Med 2018; 123:545-552. [PMID: 29508242 DOI: 10.1007/s11547-018-0866-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Distinction between treatment-related changes and tumour recurrence in patients who have received radiation treatment for brain metastases can be difficult on conventional MRI. In this study, we investigated the ability of dynamic susceptibility contrast (DSC) perfusion in differentiating necrotic changes from pathological angiogenesis and compared measurements of relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF) and K2, using a dedicated software. METHODS Twenty-nine patients with secondary brain tumors were included in this retrospective study and underwent DSC perfusion MRI with a 3-month follow-up imaging after chemo- or radiation-therapy. Region-of-interests were drawn around the contrast enhancing lesions and measurements of rCBV, rCBF and K2 were performed in all patients. Based on subsequent histological examination or clinico-radiological follow-up, the cohort was divided in two groups: recurrent disease and stable disease. Differences between the two groups were analyzed using the Student's t test. Sensitivity, specificity and diagnostic accuracy of rCBV measurements were analyzed considering three different cut-off values. RESULTS Between patients with and without disease, only rCBV and rCBF values were significant (p < 0.05). The only cut-off value giving the best diagnostic accuracy of 100% was rCBV = 2.1 (sensitivity = 100%; specificity = 100%). Patients with tumor recurrence showed a higher mean value of rCBV (mean = 4.28, standard deviation = 2.09) than patients with necrotic-related changes (mean = 0.77, standard deviation = 0.44). CONCLUSION DSC-MRI appears a clinically useful method to differentiate between tumor recurrence, tumor necrosis and pseudoprogression in patients treated for cerebral metastases. Relative CBV using a cut-off value of 2.1 proved to be the most accurate and reliable parameter.
Collapse
|
8
|
Drusco A, Bottoni A, Laganà A, Acunzo M, Fassan M, Cascione L, Antenucci A, Kumchala P, Vicentini C, Gardiman MP, Alder H, Carosi MA, Ammirati M, Gherardi S, Luscrì M, Carapella C, Zanesi N, Croce CM. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies. Oncotarget 2015; 6:20829-20839. [PMID: 26246487 PMCID: PMC4673232 DOI: 10.18632/oncotarget.4096] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/14/2015] [Indexed: 12/12/2022] Open
Abstract
Central Nervous System malignancies often require stereotactic biopsy or biopsy for differential diagnosis, and for tumor staging and grading. Furthermore, stereotactic biopsy can be non-diagnostic or underestimate grading. Hence, there is a compelling need of new diagnostic biomarkers to avoid such invasive procedures. Several biological markers have been proposed, but they can only identify specific prognostic subtype of Central Nervous System tumors, and none of them has found a standardized clinical application.The aim of the study was to identify a Cerebro-Spinal Fluid microRNA signature that could differentiate among Central Nervous System malignancies.CSF total RNA of 34 neoplastic and of 14 non-diseased patients was processed by NanoString. Comparison among groups (Normal, Benign, Glioblastoma, Medulloblastoma, Metastasis and Lymphoma) lead to the identification of a microRNA profile that was further confirmed by RT-PCR and in situ hybridization.Hsa-miR-451, -711, 935, -223 and -125b were significantly differentially expressed among the above mentioned groups, allowing us to draw an hypothetical diagnostic chart for Central Nervous System malignancies.This is the first study to employ the NanoString technique for Cerebro-Spinal Fluid microRNA profiling. In this article, we demonstrated that Cerebro-Spinal Fluid microRNA profiling mirrors Central Nervous System physiologic or pathologic conditions. Although more cases need to be tested, we identified a diagnostic Cerebro-Spinal Fluid microRNA signature with good perspectives for future diagnostic clinical applications.
Collapse
Affiliation(s)
| | | | - Alessandro Laganà
- Dept. of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mario Acunzo
- MVIMG, The Ohio State University, Columbus, OH, USA
| | - Matteo Fassan
- Dept. of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Luciano Cascione
- Lymphoma & Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
- IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Anna Antenucci
- UOSD of Clinical pathology, Regina Elena Institute, Rome, Italy
| | | | - Caterina Vicentini
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Marina P. Gardiman
- Dept. of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | | | | | - Mario Ammirati
- Dept. of Neurological Surgery, The Ohio State University, OH, USA
| | | | - Marilena Luscrì
- Dept. of Anesthesiology, Sandro Pertini Hospital, Rome, Italy
| | | | | | | |
Collapse
|
9
|
Zakaria R, Das K, Radon M, Bhojak M, Rudland PR, Sluming V, Jenkinson MD. Diffusion-weighted MRI characteristics of the cerebral metastasis to brain boundary predicts patient outcomes. BMC Med Imaging 2014; 14:26. [PMID: 25086595 PMCID: PMC4126355 DOI: 10.1186/1471-2342-14-26] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/24/2014] [Indexed: 12/27/2022] Open
Abstract
Background Diffusion-weighted MRI (DWI) has been used in neurosurgical practice mainly to distinguish cerebral metastases from abscess and glioma. There is evidence from other solid organ cancers and metastases that DWI may be used as a biomarker of prognosis and treatment response. We therefore investigated DWI characteristics of cerebral metastases and their peritumoral region recorded pre-operatively and related these to patient outcomes. Methods Retrospective analysis of 76 cases operated upon at a single institution with DWI performed pre-operatively at 1.5T. Maps of apparent diffusion coefficient (ADC) were generated using standard protocols. Readings were taken from the tumor, peritumoral region and across the brain-tumor interface. Patient outcomes were overall survival and time to local recurrence. Results A minimum ADC greater than 919.4 × 10-6 mm2/s within a metastasis predicted longer overall survival regardless of adjuvant therapies. This was not simply due to differences between the types of primary cancer because the effect was observed even in a subgroup of 36 patients with the same primary, non-small cell lung cancer. The change in diffusion across the tumor border and into peritumoral brain was measured by the “ADC transition coefficient” or ATC and this was more strongly predictive than ADC readings alone. Metastases with a sharp change in diffusion across their border (ATC >0.279) showed shorter overall survival compared to those with a more diffuse edge. The ATC was the only imaging measurement which independently predicted overall survival in multivariate analysis (hazard ratio 0.54, 95% CI 0.3 – 0.97, p = 0.04). Conclusions DWI demonstrates changes in the tumor, across the tumor edge and in the peritumoral region which may not be visible on conventional MRI and this may be useful in predicting patient outcomes for operated cerebral metastases.
Collapse
Affiliation(s)
- Rasheed Zakaria
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Zakaria R, Das K, Bhojak M, Radon M, Walker C, Jenkinson MD. The role of magnetic resonance imaging in the management of brain metastases: diagnosis to prognosis. Cancer Imaging 2014; 14:8. [PMID: 25608557 PMCID: PMC4331840 DOI: 10.1186/1470-7330-14-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 11/20/2022] Open
Abstract
This article reviews the different MRI techniques available for the diagnosis, treatment and monitoring of brain metastases with a focus on applying advanced MR techniques to practical clinical problems. Topics include conventional MRI sequences and contrast agents, functional MR imaging, diffusion weighted MR, MR spectroscopy and perfusion MR. The role of radiographic biomarkers is discussed as well as future directions such as molecular imaging and MR guided high frequency ultrasound.
Collapse
|