1
|
Weidig D, Wagner J. Coupled dynamics in binary mixtures of model colloidal Yukawa systems. SOFT MATTER 2024; 20:8897-8908. [PMID: 39485293 DOI: 10.1039/d4sm01123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The dynamical behavior of binary mixtures consisting of highly charged colloidal particles is studied by means of Brownian dynamics simulations. We investigate differently sized, but identically charged particles with nearly identical interactions between all species in highly dilute suspensions. Different short-time self-diffusion coefficients induce, mediated by electrostatic interactions, a coupling of both self and collective dynamics of differently sized particles: the long-time self-diffusion coefficients of a larger species are increased by the presence of a more mobile, smaller species and vice versa. Similar coupling effects are observed in collective dynamics where both time constant and functional form of intermediate scattering functions' initial decay are influenced by the presence of a differently sized species. We provide a systematic analysis of coupling effects in dependence on the ratio of sizes, number densities, and the strength of electrostatic interactions.
Collapse
Affiliation(s)
- Daniel Weidig
- Institut für Chemie, Universität Rostock, 18051 Rostock, Germany.
| | - Joachim Wagner
- Institut für Chemie, Universität Rostock, 18051 Rostock, Germany.
| |
Collapse
|
2
|
Rusch R, Chepizhko O, Franosch T. Intermediate scattering function of a gravitactic circle swimmer. Phys Rev E 2024; 110:054606. [PMID: 39690681 DOI: 10.1103/physreve.110.054606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/18/2024] [Indexed: 12/19/2024]
Abstract
We analyze gravitaxis of a Brownian circle swimmer by deriving and analytically characterizing the experimentally measurable intermediate scattering function (ISF). To solve the associated Fokker-Planck equation, we use a spectral-theory approach, finding formal expressions in terms of eigenfunctions and eigenvalues of the overdamped-noisy-driven pendulum problem. We further perform a Taylor series of the ISF in the wavevector to extract the cumulants up to the fourth order. We focus on the skewness and kurtosis analyzed for four observation directions in the 2D plane. Validating our findings involves conducting Langevin-dynamics simulations and interpreting the results using a harmonic approximation. The skewness and kurtosis are amplified as the orienting torque approaches the intrinsic angular drift of the circle swimmer from above, highlighting deviations from Gaussian behavior. Transforming the ISF to the comoving frame, a measurable quantity, reveals gravitactic effects and diverse behaviors spanning from diffusive motion at low wavenumbers to circular motion at intermediate wavenumbers and directed motion at higher wavenumbers.
Collapse
|
3
|
Hazra N, Lammertz J, Babenyshev A, Erkes R, Hagemans F, Misra C, Richtering W, Crassous JJ. Charged hollow microgel capsules. SOFT MATTER 2024; 20:4608-4620. [PMID: 38813847 DOI: 10.1039/d4sm00111g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Responsive hollow microgels are a fascinating class of soft model systems at the crossover between polymer capsules and microgels. The presence of the cavity makes them promising materials for encapsulation and controlled release applications but also confers them an additional softness that is reflected by their peculiar behaviour in bulk and at interfaces. Their responsivity to external stimuli, such as temperature, pH, and ionic strength, can be designed from their synthesis conditions and the choice of functional moieties. So far most studies have focused on "small" hollow microgels that were mostly studied with scattering or atomic force microscopy techniques. In our previous study, we have shown that large fluorescent hollow poly(N-isopropylacrylamide) (PNIPAM) microgels could be synthesized using micrometer-sized silica particles as sacrificial templates allowing their investigation in situ via confocal microscopy. In this work, we extend this approach to charged large hollow microgels based on poly(N-isopropylacrylamide-co-itaconic acid) (P(NIPAM-co-IA)). Hereby, we compare the structure and responsivity of "neutral" (PNIPAM) and "charged" (P(NIPAM-co-IA)) hollow microgel systems synthesized under similar conditions with the same sacrificial template using confocal and atomic force microscopy and light scattering techniques. In particular, we could demonstrate the extremely soft character of the swollen charged hollow microgels and their responsivity to pH, ionic strength, and temperature. To conclude this study, the buckling behavior of the different capsules was investigated illustrating the potential of such systems to change its conformation by varying the osmotic pressure and pH conditions.
Collapse
Affiliation(s)
- Nabanita Hazra
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany.
| | - Janik Lammertz
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany.
| | - Andrey Babenyshev
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany.
| | - Rebecca Erkes
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany.
| | - Fabian Hagemans
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany.
| | - Chandeshwar Misra
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany.
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany.
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Striker NN, Lokteva I, Dartsch M, Dallari F, Goy C, Westermeier F, Markmann V, Hövelmann SC, Grübel G, Lehmkühler F. Dynamics and Time Scales of Higher-Order Correlations in Supercooled Colloidal Systems. J Phys Chem Lett 2023; 14:4719-4725. [PMID: 37171882 DOI: 10.1021/acs.jpclett.3c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dynamics and time scales of higher-order correlations are studied in supercooled colloidal systems. A combination of X-ray photon correlation spectroscopy (XPCS) and X-ray cross-correlation analysis (XCCA) shows the typical slowing of the dynamics of a hard sphere system when approaching the glass transition. The time scales of higher-order correlations are probed using a novel time correlation function gC, tracking the time evolution of cross-correlation function C. With an increasing volume fraction, the ratio of relaxation times of gC to the standard individual particle relaxation time obtained by XPCS increases from ∼0.4 to ∼0.9. While a value of ∼0.5 is expected for free diffusion, the increasing values suggest that the local orders within the sample are becoming more long-lived for larger volume fractions. Furthermore, the dynamics of local order is more heterogeneous than the individual particle dynamics. These results indicate that not only the presence but also the lifetime of locally favored structures increases close to the glass transition.
Collapse
Affiliation(s)
- Nele N Striker
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Irina Lokteva
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Dartsch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Francesco Dallari
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Claudia Goy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Verena Markmann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Svenja C Hövelmann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 19, 24098 Kiel, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
5
|
Saisavadas MV, Dhara S, Joshi RG, Tata BVR. Large amplitude oscillatory shear studies on dense PNIPAM microgel colloidal glasses. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers (Basel) 2022; 14:polym14194245. [PMID: 36236192 PMCID: PMC9571834 DOI: 10.3390/polym14194245] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/15/2023] Open
Abstract
Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive polymer brush coatings (TRPBCs). In this review, methods for the fabrication and characterization of TRPBCs are summarized, and possibilities for their application, as well as the advantages and disadvantages of the TRPBCs, are presented in detail. Special attention is paid to the mechanisms of thermo-responsibility of the TRPBCs. Applications of TRPBCs for temperature-switchable bacteria killing, temperature-controlled protein adsorption, cell culture, and temperature-controlled adhesion/detachment of cells and tissues are considered. The specific criteria required for the desired biomedical applications of TRPBCs are presented and discussed.
Collapse
|
7
|
Structural and dynamical aspects of extremely swollen lyotropic phases. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Mao Y, Nielsen P, Ali J. Passive and Active Microrheology for Biomedical Systems. Front Bioeng Biotechnol 2022; 10:916354. [PMID: 35866030 PMCID: PMC9294381 DOI: 10.3389/fbioe.2022.916354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo. Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon.
Collapse
Affiliation(s)
- Yating Mao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Paige Nielsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| |
Collapse
|
9
|
Crystallisation in a two-dimensional granular system at constant temperature. Sci Rep 2021; 11:16531. [PMID: 34400707 PMCID: PMC8368199 DOI: 10.1038/s41598-021-96099-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
We study the crystallisation processes occurring in a nonvibrating two-dimensional magnetic granular system at various fixed values of the effective temperature. In this system, the energy loss due to dissipative effects is compensated by the continuous energy input coming into the system from a sinusoidal magnetic field. When this balance leads to high values of the effective temperature, no aggregates are formed, because particles’ kinetic energy prevents them from aggregating. For lower effective temperatures, formation of small aggregates is observed. The smaller the values of the applied field’s amplitude, the larger the number of these disordered aggregates. One also observes that when clusters form at a given effective temperature, the average effective diffusion coefficient decreases as time increases. For medium values of the effective temperature, formation of small crystals is observed. We find that the sixth bond-orientational order parameter and the number of bonds, when considering more than two, are very sensitive for exhibiting the order in the system, even when crystals are still very small.
Collapse
|
10
|
Donofrio CJ, Weeks ER. Neglecting polydispersity degrades propensity measurements in supercooled liquids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:65. [PMID: 33970360 DOI: 10.1140/epje/s10189-021-00049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
We conduct molecular dynamics simulations of a bidisperse Kob-Andersen (KA) glass former, modified to add in additional polydispersity. The original KA system is known to exhibit dynamical heterogeneity. Prior work defined propensity, the mean motion of a particle averaged over simulations reconstructing the initial positions of all particles but with randomized velocities. The existence of propensity shows that structure and dynamics are connected. In this paper, we study systems which mimic problems that would be encountered in measuring propensity in a colloidal glass former, where particles are polydisperse (they have slight size variations). We mimic polydispersity by altering the bidisperse KA system into a quartet consisting of particles both slightly larger and slightly smaller than the parent particles in the original bidisperse system. We then introduce errors into the reconstruction of the initial positions that mimic mistakes one might make in a colloidal experiment. The mistakes degrade the propensity measurement, in some cases nearly completely; one no longer has an iso-configurational ensemble in any useful sense. Our results show that a polydisperse sample is suitable for propensity measurements provided one avoids reconstruction mistakes.
Collapse
Affiliation(s)
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Zepeda-López JB, Medina-Noyola M. Waiting-time dependent non-equilibrium phase diagram of simple glass- and gel-forming liquids. J Chem Phys 2021; 154:174901. [PMID: 34241066 DOI: 10.1063/5.0039524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Under numerous circumstances, many soft and hard materials are present in a puzzling wealth of non-equilibrium amorphous states, whose properties are not stationary and depend on preparation. They are often summarized in unconventional "phase diagrams" that exhibit new "phases" and/or "transitions" in which time, however, is an essential variable. This work proposes a solution to the problem of theoretically defining and predicting these non-equilibrium phases and their time-evolving phase diagrams, given the underlying molecular interactions. We demonstrate that these non-equilibrium phases and the corresponding non-stationary (i.e., aging) phase diagrams can indeed be defined and predicted using the kinetic perspective of a novel non-equilibrium statistical mechanical theory of irreversible processes. This is illustrated with the theoretical description of the transient process of dynamic arrest into non-equilibrium amorphous solid phases of an instantaneously quenched simple model fluid involving repulsive hard-sphere plus attractive square well pair interactions.
Collapse
Affiliation(s)
- Jesús Benigno Zepeda-López
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, SLP, Mexico
| | - Magdaleno Medina-Noyola
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, SLP, Mexico
| |
Collapse
|
12
|
Wu X, Streubel R, Liu X, Kim PY, Chai Y, Hu Q, Wang D, Fischer P, Russell TP. Ferromagnetic liquid droplets with adjustable magnetic properties. Proc Natl Acad Sci U S A 2021; 118:e2017355118. [PMID: 33602813 PMCID: PMC7923629 DOI: 10.1073/pnas.2017355118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly and jamming of magnetic nanoparticles (NPs) at liquid-liquid interfaces is a versatile platform to endow structured liquid droplets with a magnetization, i.e., producing ferromagnetic liquid droplets (FMLDs). Here, we use hydrodynamics experiments to probe how the magnetization of FMLDs and their response to external stimuli can be tuned by chemical, structural, and magnetic means. The remanent magnetization stems from magnetic NPs jammed at the liquid-liquid interface and dispersed NPs magneto-statically coupled to the interface. FMLDs form even at low concentrations of magnetic NPs when mixing nonmagnetic and magnetic NPs, since the underlying magnetic dipole-driven clustering of magnetic NP-surfactants at the interface produces local magnetic properties, similar to those found with pure magnetic NP solutions. While the net magnetization is smaller, such a clustering of NPs may enable structured liquids with heterogeneous surfaces.
Collapse
Affiliation(s)
- Xuefei Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Robert Streubel
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Xubo Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Yu Chai
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong, China
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Qin Hu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peter Fischer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Physics Department, University of California, Santa Cruz, CA 95064
| | - Thomas P Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003
- World Premier Institute-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
13
|
Lehmkühler F, Hankiewicz B, Schroer MA, Müller L, Ruta B, Sheyfer D, Sprung M, Tono K, Katayama T, Yabashi M, Ishikawa T, Gutt C, Grübel G. Slowing down of dynamics and orientational order preceding crystallization in hard-sphere systems. SCIENCE ADVANCES 2020; 6:6/43/eabc5916. [PMID: 33087351 PMCID: PMC7577711 DOI: 10.1126/sciadv.abc5916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/04/2020] [Indexed: 05/27/2023]
Abstract
Despite intensive studies in the past decades, the local structure of disordered matter remains widely unknown. We show the results of a coherent x-ray scattering study revealing higher-order correlations in dense colloidal hard-sphere systems in the vicinity of their crystallization and glass transition. With increasing volume fraction, we observe a strong increase in correlations at both medium-range and next-neighbor distances in the supercooled state, both invisible to conventional scattering techniques. Next-neighbor correlations are indicative of ordered precursor clusters preceding crystallization. Furthermore, the increase in such correlations is accompanied by a marked slowing down of the dynamics, proving experimentally a direct relation between orientational order and sample dynamics in a soft matter system. In contrast, correlations continuously increase for nonequilibrated, glassy samples, suggesting that orientational order is reached before the sample slows down to reach (quasi-)equilibrium.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Birgit Hankiewicz
- Institute of Physical Chemistry, Hamburg University, Grindelallee 117, 20146 Hamburg, Germany
| | - Martin A Schroer
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Leonard Müller
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Beatrice Ruta
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
- ESRF-The European Synchrotron, 38043 Grenoble cedex, France
| | - Dina Sheyfer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Christian Gutt
- Department of Physics, University of Siegen, Walter-Flex-Str. 3, 57072 Siegen, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
14
|
Perspective: Ferromagnetic Liquids. MATERIALS 2020; 13:ma13122712. [PMID: 32549201 PMCID: PMC7345949 DOI: 10.3390/ma13122712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022]
Abstract
Mechanical jamming of nanoparticles at liquid-liquid interfaces has evolved into a versatile approach to structure liquids with solid-state properties. Ferromagnetic liquids obtain their physical and magnetic properties, including a remanent magnetization that distinguishes them from ferrofluids, from the jamming of magnetic nanoparticles assembled at the interface between two distinct liquids to minimize surface tension. This perspective provides an overview of recent progress and discusses future directions, challenges and potential applications of jamming magnetic nanoparticles with regard to 3D nano-magnetism. We address the formation and characterization of curved magnetic geometries, and spin frustration between dipole-coupled nanostructures, and advance our understanding of particle jamming at liquid-liquid interfaces.
Collapse
|
15
|
Kaithakkal Jathavedan K, Kanheerampockil F, Bhat S. Role of particle morphology in the yielding behavior of dense thermosensitive microgel suspensions. J Appl Polym Sci 2020. [DOI: 10.1002/app.48625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kiran Kaithakkal Jathavedan
- Aachen‐Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus Geleen 6167 RD Netherlands
| | - Fayis Kanheerampockil
- J‐109, Polymers and Advanced Materials Laboratory, Polymer Science & Engineering Division, CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Suresh Bhat
- J‐104, Polymers and Advanced Materials Laboratory, Polymer Science & Engineering Division, CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
| |
Collapse
|
16
|
Elizondo-Aguilera LF, Cortés-Morales EC, Zubieta Rico PF, Medina-Noyola M, Castañeda-Priego R, Voigtmann T, Pérez-Ángel G. Arrested dynamics of the dipolar hard sphere model. SOFT MATTER 2020; 16:170-190. [PMID: 31774110 DOI: 10.1039/c9sm00687g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the combined results of molecular dynamics simulations and theoretical calculations concerning various dynamical arrest transitions in a model system representing a dipolar fluid, namely, N (soft core) rigid spheres interacting through a truncated dipole-dipole potential. By exploring different regimes of concentration and temperature, we find three distinct scenarios for the slowing down of the dynamics of the translational and orientational degrees of freedom: at low (η = 0.2) and intermediate (η = 0.4) volume fractions, both dynamics are strongly coupled and become simultaneously arrested upon cooling. At high concentrations (η≥ 0.6), the translational dynamics shows the features of an ordinary glass transition, either by compressing or cooling down the system, but with the orientations remaining ergodic, thus indicating the existence of partially arrested states. In this density regime, but at lower temperatures, the relaxation of the orientational dynamics also freezes. The physical scenario provided by the simulations is discussed and compared against results obtained with the self-consistent generalized Langevin equation theory, and both provide a consistent description of the dynamical arrest transitions in the system. Our results are summarized in an arrested states diagram which qualitatively organizes the simulation data and provides a generic picture of the glass transitions of a dipolar fluid.
Collapse
Affiliation(s)
- Luis F Elizondo-Aguilera
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), 51170 Köln, Germany.
| | - Ernesto C Cortés-Morales
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Pablo F Zubieta Rico
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Magdaleno Medina-Noyola
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Ramón Castañeda-Priego
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Mexico
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), 51170 Köln, Germany. and Department of Physics, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gabriel Pérez-Ángel
- Departamento de Física Aplicada, CINVESTAV del IPN, A. P. 73 "Cordemex", 97310 Mérida, Yucatán, Mexico
| |
Collapse
|
17
|
Abstract
The glass transition in soft matter systems is generally triggered by an increase in packing fraction or a decrease in temperature. It has been conjectured that the internal topology of the constituent particles, such as polymers, can cause glassiness too. However, the conjecture relies on immobilizing a fraction of the particles and is therefore difficult to fulfill experimentally. Here we show that in dense solutions of circular polymers containing (active) segments of increased mobility, the interplay of the activity and the topology of the polymers generates an unprecedented glassy state of matter. The active isotropic driving enhances mutual ring threading to the extent that the rings can relax only in a cooperative way, which dramatically increases relaxation times. Moreover, the observed phenomena feature similarities with the conformation and dynamics of the DNA fibre in living nuclei of higher eukaryotes.
Collapse
Affiliation(s)
- Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria.
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Iurii Chubak
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
18
|
Chacko RN, Sollich P, Fielding SM. Slow Coarsening in Jammed Athermal Soft Particle Suspensions. PHYSICAL REVIEW LETTERS 2019; 123:108001. [PMID: 31573278 DOI: 10.1103/physrevlett.123.108001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Indexed: 06/10/2023]
Abstract
We simulate a densely jammed, athermal assembly of repulsive soft particles immersed in a solvent. Starting from an initial condition corresponding to a quench from a high temperature, we find nontrivial slow dynamics driven by a gradual release of stored elastic energy, with the root mean squared particle speed decaying as a power law in time with a fractional exponent. This decay is accompanied by the presence within the assembly of spatially localized and temporally intermittent "hot spots" of nonaffine deformation, connected by long-ranged swirls in the velocity field, reminiscent of the local plastic events and long-ranged elastic propagation that have been intensively studied in sheared amorphous materials. The pattern of hot spots progressively coarsens, with the hot-spot size and separation slowly growing over time, and the associated correlation length in particle speed increasing as a sublinear power law. Each individual spot, however, exists only transiently within an overall picture of strongly intermittent dynamics.
Collapse
Affiliation(s)
- R N Chacko
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - P Sollich
- Institute for Theoretical Physics, University of Göttingen, 37077 Göttingen, Germany
- Department of Mathematics, King's College London, London WC2R 2LS, United Kingdom
| | - S M Fielding
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
19
|
Kureha T, Minato H, Suzuki D, Urayama K, Shibayama M. Concentration dependence of the dynamics of microgel suspensions investigated by dynamic light scattering. SOFT MATTER 2019; 15:5390-5399. [PMID: 31204747 DOI: 10.1039/c9sm01030k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dynamics of colloidal gel particle suspensions, i.e., microgel suspensions, has been investigated by dynamic light scattering (DLS) over a wide concentration range from the (I) dilute (φ < φcp) to the (II) intermediate (φ ≈ φcp) and (III) high concentration regions (φ ≫ φcp), where φ and φcp are the volume fraction of the gel particles in the suspension and the random close packing fraction, φcp ≈ 0.64, respectively. The time-intensity correlation function exhibited a distinct change with increasing φ, i.e., from ergodic behaviour (region I and II) to nonergodic behaviour (region III). A mode transition from translational (region I) to cooperative diffusion (the so-called gel mode) (region II) was also observed due to the soft and deformable nature of the microgels. Different from the dynamics of hard colloidal glass suspensions, the gel mode remained even at φ ≫ φcp. By using the ensemble-averaged time-correlation function, IE, we quantify the relationship between φ and their dynamics, and show that the soft microgels are deswollen in the densely packed state.
Collapse
Affiliation(s)
- Takuma Kureha
- Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan.
| | - Haruka Minato
- Graduate School of Textile Science & Technology, Shinshu University, Ueda 386-8567, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, Ueda 386-8567, Japan and Division of Smart Textile, Institute for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda 386-8567, Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mitsuhiro Shibayama
- Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan.
| |
Collapse
|
20
|
Handle PH, Rovigatti L, Sciortino F. q-Independent Slow Dynamics in Atomic and Molecular Systems. PHYSICAL REVIEW LETTERS 2019; 122:175501. [PMID: 31107067 DOI: 10.1103/physrevlett.122.175501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 06/09/2023]
Abstract
Investigating million-atom systems for very long simulation times, we demonstrate that the collective density-density correlation time (τ_{α}) in simulated supercooled water and silica becomes wave-vector independent (q^{0}) when the probing wavelength is several times larger than the interparticle distance. The q independence of the collective density-density correlation functions, a feature clearly observed in light-scattering studies of some soft-matter systems, is thus a genuine feature of many (but not all) slow-dynamics systems, either atomic, molecular, or colloidal. Indeed, we show that when the dynamics of the density fluctuations includes particle-type diffusion, as in the case of the Lennard-Jones binary-mixture model, the q^{0} regime does not set in and the relaxation time continues to scale as τ_{α}∼q^{-2} even at small q.
Collapse
Affiliation(s)
- Philip H Handle
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Lorenzo Rovigatti
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
- CNR-ISC, UoS Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
21
|
Poling-Skutvik R, Roberts RC, Slim AH, Narayanan S, Krishnamoorti R, Palmer JC, Conrad JC. Structure Dominates Localization of Tracers within Aging Nanoparticle Glasses. J Phys Chem Lett 2019; 10:1784-1789. [PMID: 30916569 DOI: 10.1021/acs.jpclett.9b00309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigate the transport and localization of tracer probes in a glassy matrix as a function of relative size using dynamic X-ray scattering experiments and molecular dynamics simulations. The quiescent relaxations of tracer particles evolve with increasing waiting time, tw. The corresponding relaxation times increase exponentially at small tw and then transition to a power-law behavior at longer tw. As tracer size decreases, the aging behavior weakens and the particles become less localized within the matrix until they delocalize at a critical size ratio δ0 ≈ 0.38. Localization does not vary with sample age even as the relaxations slow by approximately an order of magnitude, suggesting that matrix structure controls tracer localization.
Collapse
Affiliation(s)
- Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| | - Ryan C Roberts
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| | - Ali H Slim
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| | - Suresh Narayanan
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Ramanan Krishnamoorti
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| | - Jeremy C Palmer
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| |
Collapse
|
22
|
Lázaro-Lázaro E, Perera-Burgos JA, Laermann P, Sentjabrskaja T, Pérez-Ángel G, Laurati M, Egelhaaf SU, Medina-Noyola M, Voigtmann T, Castañeda-Priego R, Elizondo-Aguilera LF. Glassy dynamics in asymmetric binary mixtures of hard spheres. Phys Rev E 2019; 99:042603. [PMID: 31108620 DOI: 10.1103/physreve.99.042603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 06/09/2023]
Abstract
We perform a systematic and detailed study of the glass transition in highly asymmetric binary mixtures of colloidal hard spheres, combining differential dynamic microscopy experiments, event-driven molecular dynamics simulations, and theoretical calculations, exploring the whole state diagram and determining the self-dynamics and collective dynamics of both species. Two distinct glassy states involving different dynamical arrest transitions are consistently described, namely, a double glass with the simultaneous arrest of the self-dynamics and collective dynamics of both species, and a single glass of large particles in which the self-dynamics of the small species remains ergodic. In the single-glass scenario, spatial modulations in the collective dynamics of both species occur due to the structure of the large spheres, a feature not observed in the double-glass domain. The theoretical results, obtained within the self-consistent generalized Langevin equation formalism, are in agreement with both simulations and experimental data, thus providing a stringent validation of this theoretical framework in the description of dynamical arrest in highly asymmetric mixtures. Our findings are summarized in a state diagram that classifies the various amorphous states of highly asymmetric mixtures by their dynamical arrest mechanisms.
Collapse
Affiliation(s)
- Edilio Lázaro-Lázaro
- Instituto de Física Manuel Sandoval Vallarta, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, Mexico
| | - Jorge Adrián Perera-Burgos
- CONACYT-Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán A.C. (CICY), Calle 8, No. 39, Mz. 29, S.M. 64, 77524 Cancún, Quintana Roo, Mexico
| | - Patrick Laermann
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Tatjana Sentjabrskaja
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gabriel Pérez-Ángel
- Departamento de Física Aplicada, Cinvestav, Unidad Mérida, Apartado Postal 73 Cordemex, 97310 Mérida, Yucatán, Mexico
| | - Marco Laurati
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Mexico
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Magdaleno Medina-Noyola
- Instituto de Física Manuel Sandoval Vallarta, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, Mexico
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Mexico
| | - Thomas Voigtmann
- Department of Physics, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), Linder Höhe 51170, Köln, Germany
| | - Ramón Castañeda-Priego
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Mexico
| | | |
Collapse
|
23
|
Apparent strength versus universality in glasses of soft compressible colloids. Sci Rep 2018; 8:16817. [PMID: 30429509 PMCID: PMC6235924 DOI: 10.1038/s41598-018-35187-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/26/2018] [Indexed: 11/08/2022] Open
Abstract
Microgel colloids, solvent swollen hydrogel particles of microscopic size, are in osmotic equilibrium with their surroundings. This has a profound effect on the behaviour of dense solutions of these polymeric colloids, most notably their ability to swell and deswell depending on the osmotic pressure of the system as a whole. Here we develop a minimal simulation model to treat this intrinsic volume regulation in order to explore the effects this has on the properties of dense solutions close to a liquid-solid transition. We demonstrate how the softness dependent volume regulation of particles gives rise to an apparent change in the fragility of the colloidal glass transition, which can be scaled out through the use of an adjusted volume fraction that accounts for changes in particle size. Moreover, we show how the same model can be used to explain the selective deswelling of soft microgels in a crystalline matrix of harder particles leading to robust crystals free of defects. Our results not only highlight the non-trivial effects of osmotic regulation in governing the apparent physics of microgel suspensions, but also provides a platform to efficiently account for particle deswelling in simulations.
Collapse
|
24
|
Roller J, Pfleiderer P, Meijer JM, Zumbusch A. Detection and tracking of anisotropic core-shell colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:395903. [PMID: 30141415 DOI: 10.1088/1361-648x/aadcbf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optical microscopy techniques with three dimensional (3D) resolution are powerful tools for the real-space imaging of the structure and dynamics of colloidal systems. While real-space imaging of spherical particles is well established, the observation of shape anisotropic particles has only recently met a lot of interest. Apart from translation, shape anisotropic particles also possess additional rotational degrees of freedom. In this manuscript, we introduce a novel technique to find the position and the orientation of anisotropic particles in 3D. It is based on an algorithm which is applicable to core-shell particles consisting of a spherical core and a shell with arbitrary shape. We demonstrate the performance of this algorithm using PMMA/PMMA (polymethyl methacrylate) core-shell ellipsoids. The algorithm is tested on artificial images and on experimental data. The correct identification of particle positions with subpixel accuracy and of their orientations with high angular precision in dilute and dense systems is shown. In addition, we developed an advanced particle tracking algorithm that takes both translational and rotational movements of the anisotropic particles into account. We show that our 3D detection and tracking technique is suitable for the accurate and reliable detection of large and dense colloidal systems containing several thousands of particles.
Collapse
Affiliation(s)
- J Roller
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
25
|
Asai M, Cacciuto A, Kumar SK. Surface Fluctuations Dominate the Slow Glassy Dynamics of Polymer-Grafted Colloid Assemblies. ACS CENTRAL SCIENCE 2018; 4:1179-1184. [PMID: 30276251 PMCID: PMC6161052 DOI: 10.1021/acscentsci.8b00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 05/16/2023]
Abstract
Colloids grafted with a corona layer of polymers show glassy behavior that covers a wide range of fragilities, with this behavior being tunable through variations in grafting density and grafting chain length. We find that the corona roughness, which is maximized for long chain lengths and sparse grafting, is directly correlated to the concentration-dependence of the system relaxation time (fragility). Relatively rougher colloids result in stronger liquids because their rotational motions become orientationally correlated across the whole system even at low particle loadings leading to an essentially Arrhenius-like concentration-dependence of the relaxation times near the glass transition. The smoother colloids do not show as much orientational correlation except at higher densities leading to fragile behavior. We therefore propose that these materials are an ideal model to study the physical properties of the glass transition.
Collapse
Affiliation(s)
- Makoto Asai
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Angelo Cacciuto
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sanat K. Kumar
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
26
|
Richard D, Hallett J, Speck T, Royall CP. Coupling between criticality and gelation in "sticky" spheres: a structural analysis. SOFT MATTER 2018; 14:5554-5564. [PMID: 29809218 DOI: 10.1039/c8sm00389k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We combine experiments and simulations to study the link between criticality and gelation in sticky spheres. We employ confocal microscopy to image colloid-polymer mixtures and Monte Carlo simulations of the square-well (SW) potential as a reference model. To this end, we map our experimental samples onto the SW model. We find an excellent structural agreement between experiments and simulations, both for locally favored structures at the single particle level and large-scale fluctuations at criticality. We follow in detail the rapid structural change in the critical fluid when approaching the gas-liquid binodal and highlight the role of critical density fluctuations for this structural crossover. Our results link the arrested spinodal decomposition to long-lived energetically favored structures, which grow even away from the binodal due to the critical scaling of the bulk correlation length and static susceptibility.
Collapse
Affiliation(s)
- David Richard
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
27
|
The glass formation of a repulsive system with also a short range attractive potential: A re-interpretation of the free volume theory. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Kodger TE, Lu PJ, Wiseman GR, Weitz DA. Stable, Fluorescent Polymethylmethacrylate Particles for the Long-Term Observation of Slow Colloidal Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6382-6389. [PMID: 28560881 DOI: 10.1021/acs.langmuir.7b00852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Suspensions of solid micron-scale colloidal particles in liquid solvents are a foundational model system used to explore a wide range of phase transitions, including crystallization, gelation, spinodal decomposition, and the glass transition. One of the most commonly used systems for these investigations is the fluorescent spherical particles of polymethylmethacrylate (PMMA) suspended in a mixture of nonpolar solvents that match the density and the refractive index of the particles to minimize sedimentation and scattering. However, the particles can swell in these solvents, changing their size and density, and may leak the fluorescent dye over days to weeks; this constrains the exploration of slow and kinetically limited processes, such as near-boundary phase separation or the glass transition. In this paper, we produce PMMA colloidal particles that employ polymerizable and photostable cyanine-based fluorescent monomers spanning the range of visible wavelengths and a polymeric stabilizer prepared from polydimethylsiloxane, PDMS-graft-PMMA. Using microcalorimetry, we characterize the thermodynamics of an accelerated equilibration process for these dispersions in the buoyancy- and refractive-index-matching solvents. We use confocal differential dynamic microscopy to demonstrate that they behave as hard spheres. The suspended particles are stable for months to years, maintaining fixed particle size and density, and do not leak dye. Thus, these particles enable longer term experiments than may have been possible earlier; we demonstrate this by observing spinodal decomposition in a mixture of these particles with a depletant polymer in the microgravity environment of the International Space Station. Using fluorescence microscopy, we observe coarsening over several months and measure the growth of the characteristic length scale to be a fraction of a picometer per second; this rate is among the slowest observed in a phase-separating system. Our protocols should facilitate the synthesis of a variety of particles.
Collapse
Affiliation(s)
- Thomas E Kodger
- Department of Physics and SEAS, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Peter J Lu
- Department of Physics and SEAS, Harvard University , Cambridge, Massachusetts 02138, United States
| | - G Reid Wiseman
- International Space Station, Low Earth Orbit, and NASA Johnson Space Center , Houston, Texas 77058, United States
| | - David A Weitz
- Department of Physics and SEAS, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
29
|
Ziegert F, Koof M, Wagner J. A new class of copolymer colloids with tunable, low refractive index for investigations of structure and dynamics in concentrated suspensions. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4137-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Roldán-Vargas S, Rovigatti L, Sciortino F. Connectivity, dynamics, and structure in a tetrahedral network liquid. SOFT MATTER 2017; 13:514-530. [PMID: 27935002 DOI: 10.1039/c6sm02282k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a detailed computational study by Brownian dynamics simulations of the structure and dynamics of a liquid of patchy particles which forms an amorphous tetrahedral network upon decreasing the temperature. The highly directional particle interactions allow us to investigate the system connectivity by discriminating the total set of particles into different populations according to a penta-modal distribution of bonds per particle. With this methodology we show how the particle bonding process is not randomly independent but it manifests clear bond correlations at low temperatures. We further explore the dynamics of the system in real space and establish a clear relation between particle mobility and particle connectivity. In particular, we provide evidence of anomalous diffusion at low temperatures and reveal how the dynamics is affected by the short-time hopping motion of the weakly bounded particles. Finally we widely investigate the dynamics and structure of the system in Fourier space and identify two quantitatively similar length scales, one dynamic and the other static, which increase upon cooling the system and reach distances of the order of few particle diameters. We summarize our findings in a qualitative picture where the low temperature regime of the viscoelastic liquid is understood in terms of an evolving network of long time metastable cooperative domains of particles.
Collapse
Affiliation(s)
- Sándalo Roldán-Vargas
- Max Planck Institute for the Physics of Complex Systems, D-01307, Dresden, Germany. and Department of Physics, Sapienza, Università di Roma, Piazzale Aldo Moro 2, I-00185, Roma, Italy
| | - Lorenzo Rovigatti
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK
| | - Francesco Sciortino
- Department of Physics, Sapienza, Università di Roma, Piazzale Aldo Moro 2, I-00185, Roma, Italy
| |
Collapse
|
31
|
Wang J, Hosoda M, Tshikudi DM, Hajjarian Z, Nadkarni SK. Intraluminal laser speckle rheology using an omni-directional viewing catheter. BIOMEDICAL OPTICS EXPRESS 2017; 8:137-150. [PMID: 28101407 PMCID: PMC5231287 DOI: 10.1364/boe.8.000137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 05/27/2023]
Abstract
A number of disease conditions in luminal organs are associated with alterations in tissue mechanical properties. Here, we report a new omni-directional viewing Laser Speckle Rheology (LSR) catheter for mapping the mechanical properties of luminal organs without the need for rotational motion. The LSR catheter incorporates multiple illumination fibers, an optical fiber bundle and a multi-faceted mirror to permit omni-directional viewing of the luminal wall. By retracting the catheter using a motor-drive assembly, cylindrical maps of tissue mechanical properties are reconstructed. Evaluation conducted in a test phantom with circumferentially-varying mechanical properties demonstrates the capability of the LSR catheter for the accurate mechanical assessment of luminal organs.
Collapse
Affiliation(s)
- Jing Wang
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, MA 02114, USA
- Authors contributed equally to this work
| | - Masaki Hosoda
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, MA 02114, USA
- Healthcare Optics Research Laboratory, Canon U.S.A., Inc., Cambridge, MA 02139, USA
- Authors contributed equally to this work
| | - Diane M. Tshikudi
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, MA 02114, USA
| | - Zeinab Hajjarian
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, MA 02114, USA
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, MA 02114, USA
| |
Collapse
|
32
|
Liu Y, Edmond KV, Curran A, Bryant C, Peng B, Aarts DGAL, Sacanna S, Dullens RPA. Core-Shell Particles for Simultaneous 3D Imaging and Optical Tweezing in Dense Colloidal Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8001-8006. [PMID: 27380320 DOI: 10.1002/adma.201602137] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/06/2016] [Indexed: 05/23/2023]
Abstract
A new colloidal system that consists of core-shell "probe" particles embedded in an optically transparent "host" particle suspension is developed. This system enables simultaneous fast confocal imaging and optical tweezing in dense 3D colloidal materials.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Kazem V Edmond
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Arran Curran
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Charles Bryant
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Bo Peng
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, NY, 10003, USA.
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom.
| |
Collapse
|
33
|
Hannam SDW, Daivis PJ, Bryant G. Dynamics of a model colloidal suspension from dilute to freezing. Phys Rev E 2016; 94:012619. [PMID: 27575191 DOI: 10.1103/physreve.94.012619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/07/2022]
Abstract
Molecular dynamics simulation was used to study a model colloidal suspension at a range of packing fractions from the dilute limit up to the freezing point. This study builds on previous work by the authors which modeled the colloidal particles with a hard core surrounded by a Weeks-Chandler-Anderson potential with modified interaction parameters, and included an explicit solvent. In this work, we study dynamical properties of the model by first calculating the velocity autocorrelation function, the self-diffusion coefficient, and the mutual diffusion coefficient. We also perform detailed calculations of the colloidal particle intermediate scattering function to study the change in dynamics leading up to the freezing point, and to determine whether the current model can be used to interpret light scattering experiments. We then perform a multiexponential analysis on the intermediate scattering function results and find that the data are fitted well by the sum of two exponentials, which is in line with previous analysis of experimental colloidal suspensions. The amplitudes and decay coefficients of the two modes are determined over a large range of wave vectors at packing fractions leading up to the freezing point. We found that the maximum wave vector at which macroscopic diffusive behavior was observed decreased as the packing fraction increased, and a simple extrapolation shows the maximum wave vector going to zero at the melting point. Lastly, the ratio of the two decay coefficients is compared to the scaling law proposed by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)PRLTAO0031-900710.1103/PhysRevLett.77.771]. It was found that the ratio was not constant, but instead was wave vector dependent.
Collapse
Affiliation(s)
- S D W Hannam
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, GPO Box 2476, Melbourne Vic 3001, Australia
| | - P J Daivis
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, GPO Box 2476, Melbourne Vic 3001, Australia
| | - G Bryant
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, GPO Box 2476, Melbourne Vic 3001, Australia
| |
Collapse
|
34
|
Sato T, Akahane T, Amano K, Hyodo R, Yanase K, Ogura T. Scattering and Spectroscopic Study on the Hydration and Phase Behavior of Aqueous Alcohol Ethoxylate and Methyl Ester Ethoxylate: Effects of Terminal Groups in Hydrophilic Chains. J Phys Chem B 2016; 120:5444-54. [DOI: 10.1021/acs.jpcb.6b04275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takaaki Sato
- Department
of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Takesi Akahane
- Department
of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Kenshi Amano
- Department
of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Ryo Hyodo
- Functional Materials Science Research Laboratories, R&D, Lion Corporation, Tokyo 132-0035, Japan
| | - Keiichi Yanase
- Department
of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Taku Ogura
- Functional Materials Science Research Laboratories, R&D, Lion Corporation, Tokyo 132-0035, Japan
| |
Collapse
|
35
|
Jang S, Kulkarni A, Qin H, Kim T. Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:046101. [PMID: 27131717 DOI: 10.1063/1.4945692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution by analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.
Collapse
Affiliation(s)
- Sunjae Jang
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Atul Kulkarni
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Hongyi Qin
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 440-746, South Korea
| | - Taesung Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, South Korea
| |
Collapse
|
36
|
On the percolation of alginate/calcium systems at low concentrations. Carbohydr Polym 2016; 137:480-487. [PMID: 26686154 DOI: 10.1016/j.carbpol.2015.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022]
Abstract
The sol-to-gel transition of an alginate rich in β-d-mannuronic acid residues and at a concentration of 0.1% w/v in 15 mM NaCl in the presence of calcium ions of 0 to 3.5mM was studied with dynamic light scattering. The dynamics of the different systems added further insight into the alginate gel forming mechanisms. Below a Ca(2+) concentration of 0.7 mM, the build-up of small aggregates could be verified. Moreover, at a critical concentration, close to 0.9 mM Ca(2+), a percolated, non-ergodic network started to form from some of these aggregates, with smaller aggregates still diffusing in the network. The system displayed strong non-ergodicy at high Ca(2+) concentrations with a non-ergodicity parameter that appeared to form discontinuously from near zero to a clearly non-zero value at the critical Ca(2+) concentration.
Collapse
|
37
|
Tikhonov VE, Blagodatskikh IV, Postnikov VA, Klemenkova ZS, Vyshivannaya OV, Khokhlov AR. New approach to the synthesis of a functional macroporous poly(vinyl alcohol) network and design of boronate affinity sorbent for protein separation. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Palangetic L, Feldman K, Schaller R, Kalt R, Caseri WR, Vermant J. From near hard spheres to colloidal surfboards. Faraday Discuss 2016; 191:325-349. [DOI: 10.1039/c6fd00052e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This work revisits the synthesis of the colloidal particles most commonly used for making model near hard suspensions or as building blocks of model colloidal gels, i.e. sterically stabilised poly(methyl methacrylate) (PMMA) particles. The synthesis of these particles is notoriously hard to control and generally the problems are ascribed to the difficulty in synthesising the graft stabiliser (PMMA-g-PHSA). In the present work, it is shown that for improving the reliability of the synthesis as a whole, control over the polycondensation of the 12-polyhydroxystearic acid is the key. By changing the catalyst and performing the polycondensation in the melt, the chain length of the 12-polyhydroxystearic acid is better controlled, as confirmed by 1H-NMR spectroscopy. Control over the graft copolymer now enables us to make small variations of near hard sphere colloids, for example spherical PMMA particles with essentially the same core size and different stabilising layer thicknesses can now be readily produced, imparting controlled particle softness. The PMMA spheres can be further employed to create, in gram scale quantities, colloidal building blocks having geometrical and/or chemical anisotropy by using a range of mechanical deformation methods. The versatility of the latter methods is demonstrated for polystyrene latex particles as well.
Collapse
Affiliation(s)
| | - Kirill Feldman
- Department of Materials
- ETH Zurich
- CH-8093 Zurich
- Switzerland
| | | | - Romana Kalt
- Department of Materials
- ETH Zurich
- CH-8093 Zurich
- Switzerland
| | | | - Jan Vermant
- Department of Materials
- ETH Zurich
- CH-8093 Zurich
- Switzerland
| |
Collapse
|
39
|
Zhou Z, Jia D, Hollingsworth JV, Cheng H, Han CC. From repulsive to attractive glass: A rheological investigation. J Chem Phys 2015; 143:234901. [DOI: 10.1063/1.4937796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Jia
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - He Cheng
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
| | - Charles C. Han
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
40
|
Denisov DV, Dang MT, Struth B, Zaccone A, Wegdam GH, Schall P. Sharp symmetry-change marks the mechanical failure transition of glasses. Sci Rep 2015; 5:14359. [PMID: 26403482 PMCID: PMC4585902 DOI: 10.1038/srep14359] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/26/2015] [Indexed: 11/09/2022] Open
Abstract
Glasses acquire their solid-like properties by cooling from the supercooled liquid via a continuous transition known as the glass transition. Recent research on soft glasses indicates that besides temperature, another route to liquify glasses is by application of stress that drives relaxation and flow. Here, we show that unlike the continuous glass transition, the failure of glasses to applied stress occurs by a sharp symmetry change that reminds of first-order equilibrium transitions. Using simultaneous x-ray scattering during the oscillatory rheology of a colloidal glass, we identify a sharp symmetry change from anisotropic solid to isotropic liquid structure at the crossing of the storage and loss moduli. Concomitantly, intensity fluctuations sharply acquire Gaussian distributions characteristic of liquids. Our observations and theoretical framework identify mechanical failure as a sharp atomic affine-to-nonaffine transition, providing a new conceptual paradigm of the oscillatory yielding of this technologically important class of materials, and offering new perspectives on the glass transition.
Collapse
Affiliation(s)
- Dmitry V. Denisov
- Institute of Physics, University of Amsterdam, P.O. box 94485, 1090 GL Amsterdam, The Netherlands
| | - Minh Triet Dang
- Institute of Physics, University of Amsterdam, P.O. box 94485, 1090 GL Amsterdam, The Netherlands
| | - Bernd Struth
- Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Alessio Zaccone
- Physics Department and Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | - Gerard H. Wegdam
- Institute of Physics, University of Amsterdam, P.O. box 94485, 1090 GL Amsterdam, The Netherlands
| | - P. Schall
- Institute of Physics, University of Amsterdam, P.O. box 94485, 1090 GL Amsterdam, The Netherlands
| |
Collapse
|
41
|
Gupta S, Camargo M, Stellbrink J, Allgaier J, Radulescu A, Lindner P, Zaccarelli E, Likos CN, Richter D. Dynamic phase diagram of soft nanocolloids. NANOSCALE 2015; 7:13924-13934. [PMID: 26219628 DOI: 10.1039/c5nr03702f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a comprehensive experimental and theoretical study covering micro-, meso- and macroscopic length and time scales, which enables us to establish a generalized view in terms of structure-property relationship and equilibrium dynamics of soft colloids. We introduce a new, tunable block copolymer model system, which allows us to vary the aggregation number, and consequently its softness, by changing the solvophobic-to-solvophilic block ratio (m : n) over two orders of magnitude. Based on a simple and general coarse-grained model of the colloidal interaction potential, we verify the significance of interaction length σint governing both structural and dynamic properties. We put forward a quantitative comparison between theory and experiment without adjustable parameters, covering a broad range of experimental polymer volume fractions (0.001 ≤ϕ≤ 0.5) and regimes from ultra-soft star-like to hard sphere-like particles, that finally results in the dynamic phase diagram of soft colloids. In particular, we find throughout the concentration domain a strong correlation between mesoscopic diffusion and macroscopic viscosity, irrespective of softness, manifested in data collapse on master curves using the interaction length σint as the only relevant parameter. A clear reentrance in the glass transition at high aggregation numbers is found, recovering the predicted hard-sphere (HS) value in the hard-sphere like limit. Finally, the excellent agreement between our new experimental systems with different but already established model systems shows the relevance of block copolymer micelles as a versatile realization of soft colloids and the general validity of a coarse-grained approach for the description of the structure and dynamics of soft colloids.
Collapse
Affiliation(s)
- Sudipta Gupta
- JCNS-1 and ICS-1, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Malkin AY, Kulichikhin VG. Structure and rheology of highly concentrated emulsions: a modern look. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4499] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Iglesias GR, Pirolt F, Tomšič M, Glatter O. Dynamics of liquid-crystalline emulsion droplets arrested in hydrogels: Addressing the multiple scattering problem in turbid systems. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Mallamace F, Corsaro C, Mallamace D, Chen SH. The fragile-to-strong dynamical crossover and the system viscoelasticity in attractive glass forming colloids. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3713-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Kwaśniewski P, Fluerasu A, Madsen A. Anomalous dynamics at the hard-sphere glass transition. SOFT MATTER 2014; 10:8698-8704. [PMID: 25255771 DOI: 10.1039/c4sm01671h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We use X-ray photon correlation spectroscopy to study the dynamics of hard sphere suspensions and report the emergence of ergodicity restoring anomalous intermittent relaxation modes in the highest concentration suspension that is estimated to be above the glass transition concentration. We associate these phenomena with non-thermal stress induced relaxations and support our interpretation by a direct comparison of the results with predictions of the mode coupling theory.
Collapse
Affiliation(s)
- Paweł Kwaśniewski
- European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble, France
| | | | | |
Collapse
|
46
|
Basak R, Bandyopadhyay R. Formation and rupture of Ca(2+) induced pectin biopolymer gels. SOFT MATTER 2014; 10:7225-7233. [PMID: 25160564 DOI: 10.1039/c4sm00748d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
When calcium salts are added to an aqueous solution of polysaccharide pectin, ionic cross-links form between pectin chains, giving rise to a gel network in dilute solution. In this work, dynamic light scattering (DLS) is employed to study the microscopic dynamics of the fractal aggregates (flocs) that constitute the gels, while rheological measurements are carried out to study the process of gel rupture. As the calcium salt concentration is increased, DLS experiments reveal that the polydispersity of the flocs increase simultaneously with the characteristic relaxation times of the gel network. Above a critical salt concentration, the flocs become interlinked to form a reaction-limited fractal gel network. Rheological studies demonstrate that the limits of the linear rheological response and the critical stresses required to rupture these networks both decrease with the increase in salt concentration. These features indicate that the ion-mediated pectin gels studied here lie in a 'strong link' regime that is characterised by inter-floc links that are stronger than intra-floc links. A scaling analysis of the experimental data presented here demonstrates that the elasticities of the individual fractal flocs exhibit power-law dependences on the added salt concentration. We conclude that when both pectin and salt concentrations are increased, the number of fractal flocs of pectin increases simultaneously with the density of crosslinks, giving rise to very large values of the bulk elastic modulus.
Collapse
Affiliation(s)
- Rajib Basak
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| | | |
Collapse
|
47
|
Mei L, Somesfalean G, Svanberg S. Frequency-modulated light scattering interferometry employed for optical properties and dynamics studies of turbid media. BIOMEDICAL OPTICS EXPRESS 2014; 5:2810-22. [PMID: 25136504 PMCID: PMC4133008 DOI: 10.1364/boe.5.002810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 05/03/2023]
Abstract
In the present work, fiber-based frequency-modulated light scattering interferometry (FMLSI) is developed and employed for studies of optical properties and dynamics in liquid phantoms made from Intralipid(®). The fiber-based FMLSI system retrieves the optical properties by examining the intensity fluctuations through the turbid medium in a heterodyne detection scheme using a continuous-wave frequency-modulated coherent light source. A time resolution of 21 ps is obtained, and the experimental results for the diluted Intralipid phantoms show good agreement with the predicted results based on published data. The present system shows great potential for assessment of optical properties as well as dynamic studies in liquid phantoms, dairy products, and human tissues.
Collapse
Affiliation(s)
- Liang Mei
- Atomic Physics Division, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Gabriel Somesfalean
- Atomic Physics Division, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Sune Svanberg
- Atomic Physics Division, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden ; Centre for Optical and Electromagnetic Research, South China Normal University, 510006 Guangzhou, China
| |
Collapse
|
48
|
Sadeghpour A, Pirolt F, Iglesias GR, Glatter O. Lipid transfer between submicrometer sized Pickering ISAsome emulsions and the influence of added hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2639-2647. [PMID: 24559265 DOI: 10.1021/la404583y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Transfer of lipids between droplets in Pickering emulsions has been studied by time-resolved small-angle X-ray scattering (SAXS). The special features of self-assembled liquid-crystalline phases have been applied to examine the kinetics of internal phase reorganization imposed by lipid release and uptake by the droplets. The findings reveal faster transfer kinetics in Pickering emulsions than in emulsions stabilized with Pluronic F127. It is shown that the transfer kinetics can be accelerated by adding free surfactant to the dispersions and that this acceleration becomes more dominant when micelles are formed. The effect of immobilization of the droplets has been studied by incorporating them into the appropriate hydrogel network. The droplets are arrested, and the transfer slows down significantly at high enough concentrations of the hydrogel where nonergodic systems are obtained.
Collapse
Affiliation(s)
- Amin Sadeghpour
- Department of Chemistry, Karl-Franzens-University Graz , Heinrichstraße 28, 8010 Graz, Austria
| | | | | | | |
Collapse
|
49
|
Lin NYC, McCoy JH, Cheng X, Leahy B, Israelachvili JN, Cohen I. A multi-axis confocal rheoscope for studying shear flow of structured fluids. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:033905. [PMID: 24689598 DOI: 10.1063/1.4868688] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a new design for a confocal rheoscope that enables uniform uniaxial or biaxial shear. The design consists of two precisely positioned parallel plates with a gap that can be adjusted down to 2 ±0.1 μm, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions.
Collapse
Affiliation(s)
- Neil Y C Lin
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Jonathan H McCoy
- Department of Physics and Astronomy, Colby College, Waterville, Maine 04901, USA
| | - Xiang Cheng
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Brian Leahy
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Jacob N Israelachvili
- Department of Chemical Engineering, and Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
50
|
Di X, Peng X, McKenna GB. Dynamics of a thermo-responsive microgel colloid near to the glass transition. J Chem Phys 2014; 140:054903. [DOI: 10.1063/1.4863327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|