1
|
Purz TL, Hipsley BT, Martin EW, Ulbricht R, Cundiff ST. Rapid multiplex ultrafast nonlinear microscopy for material characterization. OPTICS EXPRESS 2022; 30:45008-45019. [PMID: 36522912 DOI: 10.1364/oe.472054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate rapid imaging based on four-wave mixing (FWM) by assessing the quality of advanced materials through measurement of their nonlinear response, exciton dephasing, and exciton lifetimes. We use a WSe2 monolayer grown by chemical vapor deposition as a canonical example to demonstrate these capabilities. By comparison, we show that extracting material parameters such as FWM intensity, dephasing times, excited state lifetimes, and distribution of dark/localized states allows for a more accurate assessment of the quality of a sample than current prevalent techniques, including white light microscopy and linear micro-reflectance spectroscopy. We further discuss future improvements of the ultrafast FWM techniques by modeling the robustness of exponential decay fits to different spacing of the sampling points. Employing ultrafast nonlinear imaging in real-time at room temperature bears the potential for rapid in-situ sample characterization of advanced materials and beyond.
Collapse
|
2
|
Liu A, Nagamine G, Bonato LG, Almeida DB, Zagonel LF, Nogueira AF, Padilha LA, Cundiff ST. Toward Engineering Intrinsic Line Widths and Line Broadening in Perovskite Nanoplatelets. ACS NANO 2021; 15:6499-6506. [PMID: 33769788 DOI: 10.1021/acsnano.0c09244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perovskite nanoplatelets possess extremely narrow absorption and emission line widths, which are crucial characteristics for many optical applications. However, their underlying intrinsic and extrinsic line-broadening mechanisms are poorly understood. Here, we apply multidimensional coherent spectroscopy to determine the homogeneous line broadening of colloidal perovskite nanoplatelet ensembles. We demonstrate a dependence of not only their intrinsic line widths but also of various broadening mechanisms on platelet geometry. We find that decreasing nanoplatelet thickness by a single monolayer results in a 2-fold reduction of the inhomogeneous line width and a 3-fold reduction of the intrinsic homogeneous line width to the sub-millielectronvolts regime. In addition, our measurements suggest homogeneously broadened exciton resonances in two-layer (but not necessarily three-layer) nanoplatelets at room-temperature.
Collapse
Affiliation(s)
- Albert Liu
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gabriel Nagamine
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Luiz G Bonato
- Instituto de Quimica, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Diogo B Almeida
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Luiz F Zagonel
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Ana F Nogueira
- Instituto de Quimica, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Lazaro A Padilha
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Steven T Cundiff
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Srimath Kandada AR, Li H, Thouin F, Bittner ER, Silva C. Stochastic scattering theory for excitation-induced dephasing: Time-dependent nonlinear coherent exciton lineshapes. J Chem Phys 2020; 153:164706. [PMID: 33138398 DOI: 10.1063/5.0026351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We develop a stochastic theory that treats time-dependent exciton-exciton s-wave scattering and that accounts for dynamic Coulomb screening, which we describe within a mean-field limit. With this theory, we model excitation-induced dephasing effects on time-resolved two-dimensional coherent optical lineshapes and we identify a number of features that can be attributed to the many-body dynamics occurring in the background of the exciton, including dynamic line narrowing, mixing of real and imaginary spectral components, and multi-quantum states. We test the model by means of multidimensional coherent spectroscopy on a two-dimensional metal-halide semiconductor that hosts tightly bound excitons and biexcitons that feature strong polaronic character. We find that the exciton nonlinear coherent lineshape reflects many-body correlations that give rise to excitation-induced dephasing. Furthermore, we observe that the exciton lineshape evolves with the population time over time windows in which the population itself is static in a manner that reveals the evolution of the multi-exciton many-body couplings. Specifically, the dephasing dynamics slow down with time, at a rate that is governed by the strength of exciton many-body interactions and on the dynamic Coulomb screening potential. The real part of the coherent optical lineshape displays strong dispersive character at zero time, which transforms to an absorptive lineshape on the dissipation timescale of excitation-induced dephasing effects, while the imaginary part displays converse behavior. Our microscopic theoretical approach is sufficiently flexible to allow for a wide exploration of how system-bath dynamics contribute to linear and non-linear time-resolved spectral behavior.
Collapse
Affiliation(s)
- Ajay Ram Srimath Kandada
- Department of Physics and Center for Functional Materials, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA
| | - Hao Li
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Félix Thouin
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA
| | - Eric R Bittner
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Carlos Silva
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA
| |
Collapse
|
4
|
Katsch F, Selig M, Knorr A. Exciton-Scattering-Induced Dephasing in Two-Dimensional Semiconductors. PHYSICAL REVIEW LETTERS 2020; 124:257402. [PMID: 32639791 DOI: 10.1103/physrevlett.124.257402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/25/2020] [Accepted: 06/01/2020] [Indexed: 05/13/2023]
Abstract
Enhanced Coulomb interactions in monolayer transition metal dichalcogenides cause tightly bound electron-hole pairs (excitons) that dominate their linear and nonlinear optical response. The latter includes bleaching, energy renormalizations, and higher-order Coulomb correlation effects like biexcitons and excitation-induced dephasing. While the first three are extensively studied, no theoretical footing for excitation-induced dephasing in exciton-dominated semiconductors is available so far. In this Letter, we present microscopic calculations based on excitonic Heisenberg equations of motion and identify the coupling of optically pumped excitons to exciton-exciton scattering continua as the leading mechanism responsible for an optical-power-dependent linewidth broadening (excitation-induced dephasing) and sideband formation. Performing time-, momentum-, and energy-resolved simulations, we quantitatively evaluate the exciton-induced dephasing for the most common monolayer transition metal dichalcogenides and find an excellent agreement with recent experiments.
Collapse
Affiliation(s)
- Florian Katsch
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Malte Selig
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Andreas Knorr
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
5
|
Kira M. Coherent quantum depletion of an interacting atom condensate. Nat Commun 2015; 6:6624. [PMID: 25767044 PMCID: PMC4382704 DOI: 10.1038/ncomms7624] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/12/2015] [Indexed: 12/02/2022] Open
Abstract
Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose–Einstein condensates (BECs), strong atom–atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom–atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. To overcome losses and thermalization, a quantum system requires strong interactions. Following recent experiments, Mackillo Kira shows that a BEC swept fast enough from weak to strong interactions exhibits coherent quantum-depletion dynamics dominated by particle clusters, resembling semiconductor excitations.
Collapse
Affiliation(s)
- M Kira
- Department of Physics, Philipps-University Marburg, Renthof 5, D-35032 Marburg, Germany
| |
Collapse
|
6
|
Paul J, Dey P, Tokumoto T, Reno JL, Hilton DJ, Karaiskaj D. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy. J Chem Phys 2014; 141:134505. [PMID: 25296819 DOI: 10.1063/1.4896777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10(11) cm(-2) was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent "rephasing" (S1) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S1 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The "two-quantum coherence" (S3) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.
Collapse
Affiliation(s)
- J Paul
- Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620, USA
| | - P Dey
- Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620, USA
| | - T Tokumoto
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - J L Reno
- CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - D J Hilton
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - D Karaiskaj
- Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620, USA
| |
Collapse
|
7
|
Kim J, Huxter VM, Curutchet C, Scholes GD. Measurement of Electron−Electron Interactions and Correlations Using Two-Dimensional Electronic Double-Quantum Coherence Spectroscopy. J Phys Chem A 2009; 113:12122-33. [DOI: 10.1021/jp907327m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jeongho Kim
- Department of Chemistry, Institute for Optical Sciences and Centre for Quantum Information and Quantum Control, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Vanessa M. Huxter
- Department of Chemistry, Institute for Optical Sciences and Centre for Quantum Information and Quantum Control, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Carles Curutchet
- Department of Chemistry, Institute for Optical Sciences and Centre for Quantum Information and Quantum Control, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Gregory D. Scholes
- Department of Chemistry, Institute for Optical Sciences and Centre for Quantum Information and Quantum Control, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
8
|
Stone KW, Turner DB, Gundogdu K, Cundiff ST, Nelson KA. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy. Acc Chem Res 2009; 42:1452-61. [PMID: 19691277 DOI: 10.1021/ar900122k] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Coulomb correlations between photoexcited charged particles in materials such as photosynthetic complexes, conjugated polymer systems, J-aggregates, and bulk or nanostructured semiconductors produce a hierarchy of collective electronic excitations, for example, excitons, and biexcitons, which may be harnessed for applications in quantum optics, light-harvesting, or quantum information technologies. These excitations represent correlations among successively greater numbers of electrons and holes, and their associated multiple-quantum coherences could reveal detailed information about complex many-body interactions and dynamics. However, unlike single-quantum coherences involving excitons, multiple-quantum coherences do not radiate; consequently, they have largely eluded direct observation and characterization. In this Account, we present a novel optical technique, two-quantum, two-dimensional Fourier transform optical spectroscopy (2Q 2D FTOPT), which allows direct observation of the dynamics of multiple exciton states that reflect the correlations of their constituent electrons and holes. The approach is based on closely analogous methods in NMR, in which multiple phase-coherent fields are used to drive successive transitions such that multiple-quantum coherences can be accessed and probed. In 2Q 2D FTOPT, a spatiotemporal femtosecond pulse-shaping technique has been used to overcome the challenge of control over multiple, noncollinear, phase-coherent optical fields in experimental geometries used to isolate selected signal contributions through wavevector matching. We present results from a prototype GaAs quantum well system, which reveal distinct coherences of biexcitons that are formed from two identical excitons or from two excitons that have holes in different spin sublevels ("heavy-hole" and "light-hole" excitons). The biexciton binding energies and dephasing dynamics are determined, and changes in the dephasing rates as a function of the excitation density are observed, revealing still higher order correlations due to exciton-biexciton interactions. Two-quantum coherences due to four-particle correlations that do not involve bound biexciton states but that influence the exciton properties are also observed and characterized. The 2Q 2D FTOPT technique allows many-body interactions that cannot be treated with a mean-field approximation to be studied in detail; the pulse-shaping approach simplifies greatly what would have otherwise been daunting measurements. This spectroscopic tool might soon offer insight into specific applications, for example, in detailing the interactions that affect how electronic energy moves within the strata of organic photovoltaic cells.
Collapse
Affiliation(s)
- Katherine W. Stone
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Daniel B. Turner
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Kenan Gundogdu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Steven T. Cundiff
- JILA, University of Colorado, Boulder, and National Institute of Standards and Technology (NIST), Boulder, Colorado 80309
| | - Keith A. Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
9
|
Salvador MR, Sreekumari Nair P, Cho M, Scholes GD. Interaction between excitons determines the non-linear response of nanocrystals. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Wagner HP, Tripathy S, Tranitz HP, Langbein W. Phase coherent photorefractivity in ZnSe single quantum wells. PHYSICAL REVIEW LETTERS 2005; 94:147402. [PMID: 15904110 DOI: 10.1103/physrevlett.94.147402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Indexed: 05/02/2023]
Abstract
We observe an efficient phase coherent photorefractive effect in ZnSe single quantum wells for ultrashort light pulses resonant to the excitonic transition. The effect is attributed to the formation of an electron grating in the quantum well induced by the interference of coherent excitons that preserve phase and polarization of the incident light fields. All characteristic features of the diffracted signal are explained and reproduced by numerical calculations that are based on the optical Bloch equations for a three-level system.
Collapse
Affiliation(s)
- H P Wagner
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0011, USA
| | | | | | | |
Collapse
|
11
|
|
12
|
Borri P, Langbein W, Birkedal D, Lyssenko VG, Hvam JM. Nonlinear Response of Localized Excitons: Effects of the Excitation-Induced Dephasing. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/1521-396x(199711)164:1<61::aid-pssa61>3.0.co;2-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Birkedal D, Lyssenko VG, Hvam JM. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:R14250-R14253. [PMID: 9985499 DOI: 10.1103/physrevb.54.r14250] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
14
|
Ferrio KB, Steel DG. Observation of the ultrafast two-photon coherent biexciton oscillation in a GaAs/AlxGa1-xAs multiple quantum well. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:R5231-R5234. [PMID: 9986576 DOI: 10.1103/physrevb.54.r5231] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
15
|
Cundiff ST, Koch M, Knox WH, Shah J, Stolz W. Optical Coherence in Semiconductors: Strong Emission Mediated by Nondegenerate Interactions. PHYSICAL REVIEW LETTERS 1996; 77:1107-1110. [PMID: 10062992 DOI: 10.1103/physrevlett.77.1107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
16
|
Schäfer W, Kim DS, Shah J, Damen TC, Cunningham JE, Goossen KW, Pfeiffer LN, Köhler K. Femtosecond coherent fields induced by many-particle correlations in transient four-wave mixing. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 53:16429-16443. [PMID: 9983484 DOI: 10.1103/physrevb.53.16429] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
17
|
Jiang M, Schaefer AC, Steel DG. Polarization dependence of the frequency-domain four-wave-mixing response of excitons in GaAs. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 51:16714-16720. [PMID: 9978677 DOI: 10.1103/physrevb.51.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
18
|
Schulze A, Knorr A, Koch SW. Pulse propagation and many-body effects in semiconductor four-wave mixing. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 51:10601-10609. [PMID: 9977755 DOI: 10.1103/physrevb.51.10601] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|