1
|
Witzorky C, Paramonov G, Bouakline F, Jaquet R, Saalfrank P, Klamroth T. Gaussian-Type Orbital Calculations for High Harmonic Generation in Vibrating Molecules: Benchmarks for H 2. J Chem Theory Comput 2021; 17:7353-7365. [PMID: 34747605 DOI: 10.1021/acs.jctc.1c00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The response of the hydrogen molecular ion, H2+, to few-cycle laser pulses of different intensities is simulated. To treat the coupled electron-nuclear motion, we use adiabatic potentials computed with Gaussian-type basis sets together with a heuristic ionization model for the electron and a grid representation for the nuclei. Using this mixed-basis approach, the time-dependent Schrödinger equation is solved, either within the Born-Oppenheimer approximation or with nonadiabatic couplings included. The dipole response spectra are compared to all-grid-based solutions for the three-body problem, which we take as a reference to benchmark the Gaussian-type basis set approaches. Also, calculations employing the fixed-nuclei approximation are performed, to quantify effects due to nuclear motion. For low intensities and small ionization probabilities, we get excellent agreement of the dynamics using Gaussian-type basis sets with the all-grid solutions. Our investigations suggest that high harmonic generation (HHG) and high-frequency response, in general, can be reliably modeled using Gaussian-type basis sets for the electrons for not too high harmonics. Further, nuclear motion destroys electronic coherences in the response spectra even on the time scale of about 30 fs and affects HHG intensities, which reflect the electron dynamics occurring on the attosecond time scale. For the present system, non-Born-Oppenheimer effects are small. The Gaussian-based, nonadiabatically coupled, time-dependent multisurface approach to treat quantum electron-nuclear motion beyond the non-Born-Oppenheimer approximation can be easily extended to approximate wavefunction methods, such as time-dependent configuration interaction singles (TD-CIS), for systems where no benchmarks are available.
Collapse
Affiliation(s)
- Christoph Witzorky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Guennaddi Paramonov
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Foudhil Bouakline
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Ralph Jaquet
- Theoretische Chemie, Universität Siegen, D-57068 Siegen, Germany
| | - Peter Saalfrank
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Tillmann Klamroth
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
2
|
Reexamining Different Factors of the Resonance-Enhanced High-Order Harmonic Generation in Atomic and Nanoparticle Laser-Induced Tin Plasmas. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We reexamine the resonance enhancement of a single harmonic emission during the propagation of ultrafast pulses through atomic and nanoparticle tin-containing laser-induced plasma (LIP). We compare the single atomic Sn and Sn nanoparticle plasmas to demonstrate a distinction in the enhancement factor of the single harmonic in the case of fixed and tunable near-infrared pulses. The analysis of the dynamics of Sn LIP shows the range of optimal delays between heating and driving pulses (130–180 ns), at which the maximal harmonic yield can be achieved. The enhancements of the 17th and 18th harmonics of 806 nm pulses were analyzed in the case of single-color and two-color pumps of LIP, showing up to a 12-fold enhancement of even harmonics in the two-color pump case. We show the enhancement of a single harmonic in the vicinity of the 4d105s25p2P3/2→4d95s25p2 transitions of Sn II ions and demonstrate how this process depends on the constituency of the plasma components at different conditions of target ablation. The application of tunable (1280–1440 nm) radiation allows for demonstrating the variations of single harmonic enhancement using a two-color pump of Sn-containing LIP.
Collapse
|
3
|
Amini K, Biegert J, Calegari F, Chacón A, Ciappina MF, Dauphin A, Efimov DK, Figueira de Morisson Faria C, Giergiel K, Gniewek P, Landsman AS, Lesiuk M, Mandrysz M, Maxwell AS, Moszyński R, Ortmann L, Antonio Pérez-Hernández J, Picón A, Pisanty E, Prauzner-Bechcicki J, Sacha K, Suárez N, Zaïr A, Zakrzewski J, Lewenstein M. Symphony on strong field approximation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:116001. [PMID: 31226696 DOI: 10.1088/1361-6633/ab2bb1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagielloński, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrödinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach the SFA is a method to solve the TDSE, in which the non-perturbative interactions are described by including continuum-continuum interactions in a systematic perturbation-like theory. In this review we focus on recent applications of the SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom molecules. The main novel part of the presented theory concerns generalizations of the SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between electron impact ionization and resonant excitation with subsequent ionization; (ii) time-dependent treatment in the single active electron approximation of 'large' molecules and targets which are themselves undergoing dynamics during the HHG or ATI processes. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields. We dedicate this work to the memory of Bertrand Carré, who passed away in March 2018 at the age of 60.
Collapse
Affiliation(s)
- Kasra Amini
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Xia Y, Jaron-Becker A. Mollow sidebands in high order harmonic spectra of molecules. OPTICS EXPRESS 2016; 24:4689-4697. [PMID: 29092298 DOI: 10.1364/oe.24.004689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel feature of high order harmonic generation process for molecules is presented for several molecules at their equilibrium geometries. The high order harmonic spectra reveal additional sidebands for each odd harmonic, which are a consequence of the resonant coupling of two valence orbitals, a mechanism analogous to Mollow triplets known from quantum optics. Strong modification of the high order harmonic generation process is illustrated with time frequency analysis in which there appear additional minima dependent on the Rabi frequency for the corresponding transition. The orbital coupling further leads to the modification of the electron dynamics which is presented using total electron density difference maps.
Collapse
|
5
|
Hadas I, Bahabad A. Macroscopic manipulation of high-order-harmonic generation through bound-state coherent control. PHYSICAL REVIEW LETTERS 2014; 113:253902. [PMID: 25554882 DOI: 10.1103/physrevlett.113.253902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Indexed: 06/04/2023]
Abstract
We propose a paradigm for macroscopic control of high-order harmonic generation by modulating the bound-state population of the medium atoms. A unique result of this scheme is that apart from regular spatial quasi-phase-matching (QPM), also purely temporal QPM of the emitted radiation can be established. Our simulations demonstrate temporal QPM by inducing homogenous Rabi oscillations in the medium and also spatial QPM by creating a grating of population inversion using the process of rapid adiabatic passage. In the simulations a scaled version of high-order harmonic generation is used: a far off-resonance 2.6 μm source generates UV-visible high-order harmonics from alkali-metal-atom vapor, while a resonant near IR source is used to coherently control the medium.
Collapse
Affiliation(s)
- Itai Hadas
- Department of Physical Electronics, School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Alon Bahabad
- Department of Physical Electronics, School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
6
|
Luppi E, Head-Gordon M. The role of Rydberg and continuum levels in computing high harmonic generation spectra of the hydrogen atom using time-dependent configuration interaction. J Chem Phys 2013; 139:164121. [DOI: 10.1063/1.4824482] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Li Y, Hong W, Zhang Q, Wang S, Lu P. Mid-infrared laser-driven broadband water-window supercontinuum generation from pre-excited medium. OPTICS EXPRESS 2011; 19:24376-24386. [PMID: 22109465 DOI: 10.1364/oe.19.024376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We theoretically investigate the broadband water-window supercontinuum generation from pre-excited medium with a mid-infrared pulse. We find that the wavelength scaling of the harmonic yield from near-visible (0.8 μm) to mid-infrared (1.8 μm) in single-atom level is λ(-2.7). Using an intense phase-stabilized few-cycle 1.6 μm laser pulse, a broadband water window supercontinuum with bandwidth of approximately 140 eV is obtained. We also investigate the macroscopic effects and find that large initial population of the excited state leads to the high-density of free electrons, which shift the carrier-envelop phase of the driving pulse and further diminish the water-window supercontinuum generation. The highly-ionized medium also results in poor temporal and spatial properties of the attosecond pulse. Instead, small initial population of the excited state can produce well phase-matched xuv supercontinuum in water-window region and an 100-as pulse with central wavelength of 2.8 nm and pulse energy of 0.15 nJ can be filtered out.
Collapse
Affiliation(s)
- Yang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
8
|
Paul PM, Clatterbuck TO, Lyngå C, Colosimo P, DiMauro LF, Agostini P, Kulander KC. Enhanced high harmonic generation from an optically prepared excited medium. PHYSICAL REVIEW LETTERS 2005; 94:113906. [PMID: 15903861 DOI: 10.1103/physrevlett.94.113906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Indexed: 05/02/2023]
Abstract
We investigate high harmonics generated from rubidium atoms irradiated simultaneously by an intense 3.5 microm fundamental field and a weak cw diode laser. When 5p, 5d, and 4d excited states are populated through cascade excitation or deexcitation, orders-of-magnitude increases in harmonic yield as compared with the ground state are observed. It appears that, quite unexpectedly, the population accumulated in the 4d state alone is responsible for the observed enhancement.
Collapse
Affiliation(s)
- P M Paul
- Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Niikura H, Villeneuve DM, Corkum PB. Mapping attosecond electron wave packet motion. PHYSICAL REVIEW LETTERS 2005; 94:083003. [PMID: 15783888 DOI: 10.1103/physrevlett.94.083003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Indexed: 05/24/2023]
Abstract
Attosecond pulses are produced when an intense infrared laser pulse induces a dipole interaction between a sublaser cycle recollision electron wave packet and the remaining coherently related bound-state population. By solving the time-dependent Schrödinger equation we show that, if the recollision electron is extracted from one or more electronic states that contribute to the bound-state wave packet, then the spectrum of the attosecond pulse is modulated depending on the relative motion of the continuum and bound wave packets. When the internal electron and recollision electron wave packet counterpropagate, the radiation intensity is lower. We show that we can fully characterize the attosecond bound-state wave packet dynamics. We demonstrate that electron motion from a two-level molecule with an energy difference of 14 eV, corresponding to a period of 290 asec, can be resolved.
Collapse
Affiliation(s)
- Hiromichi Niikura
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6.
| | | | | |
Collapse
|
10
|
Choi JS, Nam BI, Kim YS, Baik MG. A Model Study of High Harmonic Generation from Ions. J CHIN CHEM SOC-TAIP 2001. [DOI: 10.1002/jccs.200100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|