1
|
Xiang Y, Wang J, Lu Q, Li H, Lei X, Wang R. Manipulation of Bloch surface beams based on perfectly matched Bragg diffraction. OPTICS EXPRESS 2024; 32:26124-26135. [PMID: 39538484 DOI: 10.1364/oe.528115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 11/16/2024]
Abstract
A generalized method is proposed for the manipulation of Bloch surface waves (BSWs) with multiple designed phases. This method is based on perfectly matched Bragg diffraction with a wide range of available diffraction angles and can be used beyond the paraxial limit to realize nonparaxial accelerating BSW beams. When combined with the caustic method, multiple accelerating beams with pre-engineered trajectories have been successfully generated, including power-law, circular, elliptic, and bottle beams. Furthermore, the transverse light field distribution of these accelerating beams is consistent with the theoretical prediction, indicating that the beam width can be manipulated by controlling the trajectory of the beam. The results of this work will facilitate the development of novel applications where controlling the trajectory and width of the two-dimensional beams is crucial, such as surface tweezers, and lab-on-chip photonic integrations.
Collapse
|
2
|
Lee YC, Ho YL, Lin BW, Chen MH, Xing D, Daiguji H, Delaunay JJ. High-Q lasing via all-dielectric Bloch-surface-wave platform. Nat Commun 2023; 14:6458. [PMID: 37833267 PMCID: PMC10576087 DOI: 10.1038/s41467-023-41471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
Controlling the propagation and emission of light via Bloch surface waves (BSWs) has held promise in the field of on-chip nanophotonics. BSW-based optical devices are being widely investigated to develop on-chip integration systems. However, a coherent light source that is based on the stimulated emission of a BSW mode has yet to be developed. Here, we demonstrate lasers based on a guided BSW mode sustained by a gain-medium guiding structure microfabricated on the top of a BSW platform. A long-range propagation length of the BSW mode and a high-quality lasing emission of the BSW mode are achieved. The BSW lasers possess a lasing threshold of 6.7 μJ/mm2 and a very narrow linewidth reaching a full width at half maximum as small as 0.019 nm. Moreover, the proposed lasing scheme exhibits high sensitivity to environmental changes suggesting the applicability of the proposed BSW lasers in ultra-sensitive devices.
Collapse
Affiliation(s)
- Yang-Chun Lee
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ya-Lun Ho
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Bo-Wei Lin
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Mu-Hsin Chen
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Di Xing
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hirofumi Daiguji
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Jean-Jacques Delaunay
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
3
|
Xiang Y, Lu Q, Wang R. Generation of Bloch surface beams with arbitrarily designed phases. OPTICS EXPRESS 2023; 31:22102-22112. [PMID: 37381292 DOI: 10.1364/oe.491447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023]
Abstract
We proposed a new manipulation method for Bloch surface waves that can almost arbitrarily modulate the lateral phase through in-plane wave-vector matching. The Bloch surface beam is generated by a laser beam from a glass substrate incident on a carefully designed nanoarray structure, which can provide the missing momentum between the two beams and set the required initial phase of the Bloch surface beam. An internal mode was used as a channel between the incident and surface beams to improve the excitation efficiency. Using this method, we successfully realized and demonstrated the properties of various Bloch surface beams, including subwavelength-focused, self-accelerating Airy, and diffraction-free collimated beams. This manipulation method, along with the generated Bloch surface beams, will facilitate the development of two-dimensional optical systems and benefit potential applications of lab-on-chip photonic integrations.
Collapse
|
4
|
Tang X, Kuai Y, Fan Z, Zhang Z, Zhang D. Retrieving the subwavelength cross-section of dielectric nanowires with asymmetric excitation of Bloch surface waves. Phys Chem Chem Phys 2023; 25:7711-7718. [PMID: 36876861 DOI: 10.1039/d3cp00206c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Optical microscopy with a diffraction limit cannot distinguish nanowires with sectional dimensions close to or smaller than the optical resolution. Here, we propose a scheme to retrieve the subwavelength cross-section of nanowires based on the asymmetric excitation of Bloch surface waves (BSWs). Leakage radiation microscopy is used to observe the propagation of BSWs at the surface and to collect far-field scattering patterns in the substrate. A model of linear dipoles induced by tilted incident light is built to explain the directional imbalance of BSWs. It shows the potential capability in precisely resolving the subwavelength cross-section of nanowires from far-field scattering without the need for complex algorithms. Through comparing the nanowire widths measured by this method and those measured by scanning electron microscopy (SEM), the transverse resolutions of the widths of two series of nanowires with heights 55 nm and 80 nm are about 4.38 nm and 6.83 nm. All results in this work demonstrate that the new non-resonant far-field optical technology has potential application in metrology measurements with high precision by taking care of the inverse process of light-matter interaction.
Collapse
Affiliation(s)
- Xi Tang
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Yan Kuai
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Zetao Fan
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Zhiyu Zhang
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Douguo Zhang
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
5
|
Lei X, Wang R, Liu L, Xu C, Wu A, Zhan Q. Multifunctional on-chip directional coupler for spectral and polarimetric routing of Bloch surface wave. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4627-4636. [PMID: 39634740 PMCID: PMC11501675 DOI: 10.1515/nanoph-2022-0397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/11/2022] [Indexed: 12/07/2024]
Abstract
Integration of multiple diversified functionalities into an ultracompact platform is crucial for the development of on-chip photonic devices. Recently, a promising all-dielectric two-dimensional platform based on Bloch surface waves (BSWs) sustained by dielectric multilayer has been proposed to enable various functionalities and provide novel approach to photonic devices. Here, we design and fabricate a multifunctional directional coupler to achieve both spectral and polarimetric routing by employing asymmetric nanoslits in a dielectric multilayer platform. Due to the dispersion property of BSWs, the directional coupling behavior is sensitive to wavelength and polarization. We demonstrate numerically and experimentally the wavelength selective directional coupling of TE BSW mode with an intensity ratio of the BSW excitation in opposite directions reaching 10 dB. Polarization selective directional coupling is also achieved at specific operating wavelength due to different response to a nanoantenna for TE and TM BSWs. The proposed two-dimensional photonic device opens new pathway for a wide range of practical applications such as molecular sensing, imaging with different polarization, and spectral requirements.
Collapse
Affiliation(s)
- Xinrui Lei
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201204, P. R. China
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai200093, China
| | - Ruxue Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengjie Xu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aimin Wu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiwen Zhan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201204, P. R. China
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai200093, China
| |
Collapse
|
6
|
Wang R, Lei X, Jin Y, Wen X, Du L, Wu A, Zayats AV, Yuan X. Directional imbalance of Bloch surface waves for ultrasensitive displacement metrology. NANOSCALE 2021; 13:11041-11050. [PMID: 34142682 DOI: 10.1039/d1nr01251g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Precise position sensing and nanoscale optical rulers are important in many applications in nanometrology, gravitational wave detection and quantum technologies. Several implementations of such nanoscale displacement sensors have been recently developed based on interferometers, nanoantennas, optical field singularities and optical skyrmions. Here, we propose a method for ultrasensitive displacement measurements based on the directional imbalance of the excitation of Bloch surface waves by an asymmetric double slit, which have low propagation loss and provide high detected intensity. The directionality of excitation changes dramatically with a sub-nanometric displacement of the illuminating Gaussian beam across the slit and can be used for displacement and refractive index metrology. We demonstrate a theoretical intensity ratio of the BSW excitation in opposite directions exceeding 890, which provides a displacement sensitivity of up to 2.888 nm-1 with a resolution below 0.5 nm over a 100 nm linearity range. Experimentally, a directional intensity ratio more than 90 has been achieved, with a displacement sensitivity of 0.122 nm-1 over a 300 nm linearity range, resulting in a resolution below 8 nm for a 600 nm illumination wavelength. The proposed facile configuration may have potential applications in nanometrology and super-resolution microscopy.
Collapse
Affiliation(s)
- Ruxue Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Guo Q, Ou Z, Tang J, Zhang J, Lu F, Wu K, Zhang D, Zhang S, Xu H. Efficient Frequency Mixing of Guided Surface Waves by Atomically Thin Nonlinear Crystals. NANO LETTERS 2020; 20:7956-7963. [PMID: 33172279 DOI: 10.1021/acs.nanolett.0c02736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monolayer transition metal dichalcogenides possess considerable second-order nonlinear coefficients but a limited efficiency of frequency conversion due to the short interaction length with light under the typical direct illumination. Here, we demonstrate an efficient frequency mixing of the guided surface waves on a monolayer tungsten disulfide (WS2) by simultaneously lifting the temporal and spatial overlap of the guided wave and the nonlinear crystal. Three orders-of-magnitude enhancement of the conversion efficiency was achieved in the counter-propagating excitation configuration. Also, the frequency-mixing signals are highly collimated, with the emission direction and polarization controlled, respectively, by the pump frequencies and the rotation angle of WS2 relative to the propagation direction of the guided waves. These results indicate that the rules of nonlinear frequency conversion are applicable even when the crystal is scaled down to the ultimate single-layer limit. This study provides a versatile platform to enhance the nonlinear optical response of 2D materials and favor the scalable generation of a coherent light source and entangled photon pairs.
Collapse
Affiliation(s)
| | | | | | | | - Fengya Lu
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | - Douguo Zhang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | |
Collapse
|
8
|
Safronov KR, Gulkin DN, Antropov IM, Abrashitova KA, Bessonov VO, Fedyanin AA. Multimode Interference of Bloch Surface Electromagnetic Waves. ACS NANO 2020; 14:10428-10437. [PMID: 32806066 DOI: 10.1021/acsnano.0c04301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Integrated photonics aims at on-chip controlling light in the micro- and nanoscale ranges utilizing the waveguide circuits, which include such basic elements as splitters, multiplexers, and phase shifters. Several photonic platforms, including the well-developed silicon-on-insulator and surface-plasmon polaritons ones, operate well mostly in the IR region. However, operating in the visible region is challenging because of the drawbacks originating from absorption or sophisticated fabrication technology. Recently, a new promising all-dielectric platform based on Bloch surface electromagnetic waves (BSWs) in multilayer structures and functioning in the visible range has emerged finding a lot of applications primarily in sensing. Here, we show the effect of multimode interference (MMI) of BSWs and propose a method for implementing the advanced integrated photonic devices on the BSW platform. We determine the main parameters of MMI effect and demonstrate the operation of Mach-Zehnder interferometers with a predefined phase shift proving the principle of MMI BSW-based photonics in the visible spectrum. Our research will be useful for further developing a versatile toolbox of the BSW platform devices which can be essential in integrated photonics, lab-on-chip, and sensing applications.
Collapse
Affiliation(s)
- Kirill R Safronov
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry N Gulkin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya M Antropov
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Vladimir O Bessonov
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Andrey A Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
9
|
Feng F, Wei SB, Li L, Min CJ, Yuan XC, Somekh M. Spin-orbit coupling controlled near-field propagation and focusing of Bloch surface wave. OPTICS EXPRESS 2019; 27:27536-27545. [PMID: 31684519 DOI: 10.1364/oe.27.027536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Bloch surface wave (BSW) can be considered as the dielectric analogue of surface plasmon polariton (SPP) with less loss since it is sustained at the surface of a truncated dielectric multilayer. As dielectric materials show nearly no ohmic loss, BSW can propagates much farther compared to SPP, and thus is beneficial for planar optical devices. In this paper, we study the spin-orbital interaction between incident beam and BSW. We demonstrate that due to the spin-orbital coupling, the near-field properties of generated BSW can be controlled with a meta-antenna structure. The meta-antenna is composed of two gold nano-antennas oriented at 45° and 135° as a near-field coupler. By careful design of the meta-antenna, the generated BSW can be guided and focused depending on the chirality of the incident beam. Three examples of meta-antennas are demonstrated for chiral sensitive focusing, directional switching and asymmetric focusing. The proposed method can be applied as a design method for low-loss on-chip photonic devices.
Collapse
|
10
|
Chen J, Wang P, Ming H, Lakowicz JR, Zhang D. Fano resonance and polarization transformation induced by interpolarization coupling of Bloch surface waves. PHYSICAL REVIEW. B 2019; 99:115420. [PMID: 33842743 PMCID: PMC8034434 DOI: 10.1103/physrevb.99.115420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, the resonant coupling behaviors between the transverse-electric (TE) and transverse-magnetic (TM) Bloch surface waves (BSWs) on a dielectric multilayer have been theoretically studied. Due to the different penetration depths in the dielectric multilayer, the TM BSWs and TE BSWs can act as the radiative and dark electromagnetic modes, respectively. By using a rectangular grating on the dielectric multilayer, both Rabi splitting and Fano resonance phenomena based on the coupling of the two BSW modes were demonstrated, through tuning the period of the grating and the azimuthal angle of the incoming wave. Furthermore, by using the temporal coupled-mode theory, we show that the anti-Hermitian coupling between the two BSW modes contributes to the enhanced diffraction and the huge polarization transformation efficiency of incoming waves in the weak coupling regime.
Collapse
Affiliation(s)
- Junxue Chen
- School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People’s Republic of China
| | - Pei Wang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Hai Ming
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Douguo Zhang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
11
|
Augenstein Y, Vetter A, Lahijani BV, Herzig HP, Rockstuhl C, Kim MS. Inverse photonic design of functional elements that focus Bloch surface waves. LIGHT, SCIENCE & APPLICATIONS 2018; 7:104. [PMID: 30564310 PMCID: PMC6289961 DOI: 10.1038/s41377-018-0106-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 05/03/2023]
Abstract
Bloch surface waves (BSWs) are sustained at the interface of a suitably designed one-dimensional (1D) dielectric photonic crystal and an ambient material. The elements that control the propagation of BSWs are defined by a spatially structured device layer on top of the 1D photonic crystal that locally changes the effective index of the BSW. An example of such an element is a focusing device that squeezes an incident BSW into a tiny space. However, the ability to focus BSWs is limited since the index contrast achievable with the device layer is usually only on the order of Δn≈0.1 for practical reasons. Conventional elements, e.g., discs or triangles, which rely on a photonic nanojet to focus BSWs, operate insufficiently at such a low index contrast. To solve this problem, we utilize an inverse photonic design strategy to attain functional elements that focus BSWs efficiently into spatial domains slightly smaller than half the wavelength. Selected examples of such functional elements are fabricated. Their ability to focus BSWs is experimentally verified by measuring the field distributions with a scanning near-field optical microscope. Our focusing elements are promising ingredients for a future generation of integrated photonic devices that rely on BSWs, e.g., to carry information, or lab-on-chip devices for specific sensing applications.
Collapse
Affiliation(s)
- Yannick Augenstein
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andreas Vetter
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- SUSS MicroOptics SA, Rogues-Terres 61, Hauterive, 2068 Switzerland
| | - Babak Vosoughi Lahijani
- Optics & Photonics Technology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Hans Peter Herzig
- Optics & Photonics Technology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Myun-Sik Kim
- Optics & Photonics Technology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| |
Collapse
|