1
|
Tabis W, Li Y, Le Tacon M, Braicovich L, Kreyssig A, Minola M, Dellea G, Weschke E, Veit MJ, Ramazanoglu M, Goldman AI, Schmitt T, Ghiringhelli G, Barišić N, Chan MK, Dorow CJ, Yu G, Zhao X, Keimer B, Greven M. Charge order and its connection with Fermi-liquid charge transport in a pristine high-T(c) cuprate. Nat Commun 2014; 5:5875. [PMID: 25522689 DOI: 10.1038/ncomms6875] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/17/2014] [Indexed: 11/09/2022] Open
Abstract
Electronic inhomogeneity appears to be an inherent characteristic of the enigmatic cuprate superconductors. Here we report the observation of charge-density-wave correlations in the model cuprate superconductor HgBa2CuO(4+δ) (T(c)=72 K) via bulk Cu L3-edge-resonant X-ray scattering. At the measured hole-doping level, both the short-range charge modulations and Fermi-liquid transport appear below the same temperature of about 200 K. Our result points to a unifying picture in which these two phenomena are preceded at the higher pseudogap temperature by q=0 magnetic order and the build-up of significant dynamic antiferromagnetic correlations. The magnitude of the charge modulation wave vector is consistent with the size of the electron pocket implied by quantum oscillation and Hall effect measurements for HgBa2CuO(4+δ) and with corresponding results for YBa2Cu3O(6+δ), which indicates that charge-density-wave correlations are universally responsible for the low-temperature quantum oscillation phenomenon.
Collapse
Affiliation(s)
- W Tabis
- 1] School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA [2] AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Y Li
- 1] International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China [2] Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - M Le Tacon
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - L Braicovich
- CNR-SPIN, CNISM and Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - A Kreyssig
- Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - M Minola
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - G Dellea
- CNR-SPIN, CNISM and Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - E Weschke
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - M J Veit
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - M Ramazanoglu
- 1] Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA [2] Physics Engineering Department, ITU, Maslak 34469, Istanbul, Turkey
| | - A I Goldman
- Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - T Schmitt
- Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - G Ghiringhelli
- CNR-SPIN, CNISM and Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - N Barišić
- 1] School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA [2] Service de Physique de l'Etat Condensé, CEA-DSM-IRAMIS, F-91198 Gif-sur-Yvette, France [3] Institute of Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria
| | - M K Chan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - C J Dorow
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - G Yu
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - X Zhao
- 1] School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA [2] State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - B Keimer
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - M Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
2
|
Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors. Proc Natl Acad Sci U S A 2013; 110:12235-40. [PMID: 23836669 DOI: 10.1073/pnas.1301989110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upon introducing charge carriers into the copper-oxygen sheets of the enigmatic lamellar cuprates, the ground state evolves from an insulator to a superconductor and eventually to a seemingly conventional metal (a Fermi liquid). Much has remained elusive about the nature of this evolution and about the peculiar metallic state at intermediate hole-carrier concentrations (p). The planar resistivity of this unconventional metal exhibits a linear temperature dependence (ρ ∝ T) that is disrupted upon cooling toward the superconducting state by the opening of a partial gap (the pseudogap) on the Fermi surface. Here, we first demonstrate for the quintessential compound HgBa2CuO4+δ a dramatic switch from linear to purely quadratic (Fermi liquid-like, ρ ∝ T(2)) resistive behavior in the pseudogap regime. Despite the considerable variation in crystal structures and disorder among different compounds, our result together with prior work gives insight into the p-T phase diagram and reveals the fundamental resistance per copper-oxygen sheet in both linear (ρ = A1T) and quadratic (ρ = A2T(2)) regimes, with A1 ∝ A2 ∝ 1/p. Theoretical models can now be benchmarked against this remarkably simple universal behavior. Deviations from this underlying behavior can be expected to lead to new insight into the nonuniversal features exhibited by certain compounds.
Collapse
|