1
|
Liu S, Fan Y, Wang Y, Jin S, Hou M, Zeng W, Li K, Jiang T, Qin L, Yan Z, Tao Z, Zheng X, Shen C, Liu Z, Ahmad T, Zhang K, Chen W. Surface-Oxygen-Rich Bi@C Nanoparticles for High-Efficiency Electroreduction of CO 2 to Formate. NANO LETTERS 2022; 22:9107-9114. [PMID: 36317840 DOI: 10.1021/acs.nanolett.2c03573] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to alleviate excessive CO2 levels in the atmosphere and produce value-added feedstocks and fuels. However, the synthesis of high-efficiency and robust electrocatalysts remains a great challenge. This work reports the green preparation of surface-oxygen-rich carbon-nanorod-supported bismuth nanoparticles (SOR Bi@C NPs) for an efficient CO2RR toward formate. The resultant SOR Bi@C NPs catalyst displays a Faradaic efficiency of more than 91% for formate generation over a wide potential range of 440 mV. Ex situ XPS and XANES and in situ Raman spectroscopy demonstrate that the Bi-O/Bi (110) structure in the pristine SOR Bi@C NPs can remain stable during the CO2RR process. DFT calculations reveal that the Bi-O/Bi (110) structure can facilitate the formation of the *OCHO intermediate. This work provides an approach to the development of high-efficiency Bi-based catalysts for the CO2RR and offers a unique insight into the exploration of advanced electrocatalysts.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yanpeng Fan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Ying Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Song Jin
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Machuan Hou
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wenjiang Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ke Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Lang Qin
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhanliang Tao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chunyue Shen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Touqeer Ahmad
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
2
|
Chan TS, Dong CL, Chen YH, Lu YR, Wu SY, Ma YR, Lin CC, Liu RS, Chen JL, Guo J, Lee JF, Sheu HS, Yang CC, Chen CL. Mechanism of light emission and electronic properties of a Eu3+-doped Bi2SrTa2O9 system determined by coupled X-ray absorption and emission spectroscopy. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11849h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Choy JH, Hwang SJ, Park NG. Intracrystalline Structure of Molecular Mercury Halide Intercalated in High-Tc Superconducting Lattice of Bi2Sr2CaCu2Oy. J Am Chem Soc 1997. [DOI: 10.1021/ja961993x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin-Ho Choy
- Contribution from the Department of Chemistry, Center for Molecular Catalysis, Seoul National University, Seoul 151-742, Korea
| | - Seong-Ju Hwang
- Contribution from the Department of Chemistry, Center for Molecular Catalysis, Seoul National University, Seoul 151-742, Korea
| | - Nam-Gyu Park
- Contribution from the Department of Chemistry, Center for Molecular Catalysis, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|