1
|
Antalek M, Pace E, Hedman B, Hodgson KO, Chillemi G, Benfatto M, Sarangi R, Frank P. Solvation structure of the halides from x-ray absorption spectroscopy. J Chem Phys 2016; 145:044318. [PMID: 27475372 PMCID: PMC4967075 DOI: 10.1063/1.4959589] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/11/2016] [Indexed: 11/14/2022] Open
Abstract
Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, and a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (-0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.
Collapse
Affiliation(s)
- Matthew Antalek
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Elisabetta Pace
- Laboratori Nazionali di Frascati-INFN, P.O. Box 13, 00044 Frascati, Italy
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Giovanni Chillemi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Via dei Tizii 6, 00185 Roma, Italy
| | - Maurizio Benfatto
- Laboratori Nazionali di Frascati-INFN, P.O. Box 13, 00044 Frascati, Italy
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Patrick Frank
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| |
Collapse
|
2
|
Díaz-Moreno S, Chaboy J. Ab initio X-ray Absorption Spectroscopy Study of the Solvation Structure of Yttrium (III) in Dimethyl Sulfoxide. J Phys Chem B 2009; 113:3527-35. [DOI: 10.1021/jp809575g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sofía Díaz-Moreno
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, U.K., and Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jesús Chaboy
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, U.K., and Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Takeuchi T, Chainani A, Takata Y, Tanaka Y, Oura M, Tsubota M, Senba Y, Ohashi H, Mochiku T, Hirata K, Shin S. An ultrahigh-vacuum apparatus for resonant diffraction experiments using soft x rays (hnu=300-2000 eV). THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:023905. [PMID: 19256660 DOI: 10.1063/1.3078269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have developed an ultrahigh-vacuum instrument for resonant diffraction experiments using polarized soft x rays in the energy range of hnu=300-2000 eV at beamline BL17SU of SPring-8. The diffractometer consists of modified differentially pumped rotary feedthroughs for theta-2theta stages, a sample manipulator with motor-controlled x-y-z-, tilt (chi)-, and azimuth (phi)-axes, and a liquid helium flow-type cryostat for temperature dependent measurements between 30 and 300 K. Test results indicate that the diffractometer exhibits high reproducibility (better than 0.001 degrees ) for a Bragg reflection of alpha-quartz 100 at a photon energy of hnu=1950 eV. Typical off- and on-resonance Bragg reflections in the energy range of 530-1950 eV could be measured using the apparatus. The results show that x-ray diffraction experiments with energy-, azimuth-, and incident photon polarization-dependence can be reliably measured using soft x rays in the energy range of approximately 300-2000 eV. The facility can be used for resonant diffraction experiments across the L-edge of transition metals, M-edge of lanthanides, and up to the Si K-edge of materials.
Collapse
Affiliation(s)
- T Takeuchi
- RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho Sayo-gun, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Chaboy J, Nakajima N, Tezuka Y. Ab initio x-ray absorption near-edge structure study of Ti K-edge in rutile. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2007; 19:266206. [PMID: 21694083 DOI: 10.1088/0953-8984/19/26/266206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This work reports a theoretical x-ray absorption near-edge structure (XANES) spectroscopy study at the Ti K-edge in TiO(2) rutile. We present detailed ab initio computations of the Ti K-edge XANES spectrum performed within the multiple-scattering framework. An extensive discussion is presented concerning the size of the cluster needed to reproduce the experimental spectrum, especially regarding the split main absorption line. In addition, the role of the exchange and correlation potential (ECP) in reproducing all the experimental XANES features is discussed. The best agreement between experimental data and computations is obtained by using real ECP potentials, i.e. the energy-dependent Dirac-Hara exchange potential, or by using only the real part of the energy-dependent Hedin-Lundqvist complex potential, together with an additional imaginary constant to account for the core-hole lifetime and the experimental resolution. The addition of the imaginary part of the HL potential worsens the agreement between the experimental and calculated spectra, indicating the failure of the complex part of the Hedin-Lundqvist ECP in accounting for the electron damping in these systems.
Collapse
Affiliation(s)
- J Chaboy
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | |
Collapse
|
5
|
Pillep B, Behrens P, Schubert UA, Spengler J, Knözinger H. Mechanical and Thermal Spreading of Antimony Oxides on the TiO2 Surface: Dispersion and Properties of Surface Antimony Oxide Species. J Phys Chem B 1999. [DOI: 10.1021/jp991441b] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|