1
|
Li J, Wang S, Jiang Q, Qian H, Hu S, Kang H, Chen C, Zhan X, Yu A, Zhao S, Zhang Y, Chen Z, Sui Y, Qiao S, Yu G, Peng S, Jin Z, Liu X. Single-Crystal MoS 2 Monolayer Wafer Grown on Au (111) Film Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100743. [PMID: 34145739 DOI: 10.1002/smll.202100743] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Monolayer transition metal dichalcogenides (TMDCs) with high crystalline quality are important channel materials for next-generation electronics. Researches on TMDCs have been accelerated by the development of chemical vapor deposition (CVD). However, antiparallel domains and twin grain boundaries (GBs) usually form in CVD synthesis due to the special threefold symmetry of TMDCs lattices. The existence of GBs severely reduces the electrical and photoelectrical properties of TMDCs, thus restricting their practical applications. Herein, the epitaxial growth of single crystal MoS2 (SC-MoS2 ) monolayer is reported on Au (111) film across a two-inch c-plane sapphire wafer by CVD. The MoS2 domains obtained on Au (111) film exhibit unidirectional alignment with zigzag edges parallel to the <110> direction of Au (111). Experimental results indicated that the unidirectional growth of MoS2 domains on Au (111) is a temperature-guided epitaxial growth mode. The high growth temperature provides enough energy for the rotation of the MoS2 seeds to find the most favorable orientation on Au (111) to achieve a unidirectional ratio of over 99%. Moreover, the unidirectional MoS2 domains seamlessly stitched into single crystal monolayer without GBs formation. The progress achieved in this work will promote the practical applications of TMDCs in microelectronics.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Jiang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoji Qian
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shike Hu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Kang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Chen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyi Zhan
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Aobo Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sunwen Zhao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhiying Chen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yanping Sui
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shan Qiao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Guanghui Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songang Peng
- Microwave Devices and Integrated Circuits Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zhi Jin
- Microwave Devices and Integrated Circuits Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Xinyu Liu
- Microwave Devices and Integrated Circuits Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|