1
|
Su Z, Wan L, Mo F, Li J, Liu B, Liang C, Xu J, Talwar DN, Li H, Yao H. Performance Optimization of Pb 0.97La 0.03Sc 0.45Ta 0.45Ti 0.1O 3 Ceramics by Annealing Process. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4479. [PMID: 37374662 DOI: 10.3390/ma16124479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
The annealing effects on Pb0.97La0.03Sc0.45Ta0.45Ti0.1O3 (PLSTT) ceramics prepared by the solid-state reaction method are systemically investigated using experimental and theoretical techniques. Comprehensive studies are performed on the PLSTT samples by varying annealing time (AT) from t (=0, 10, 20, 30, 40, 50 and 60) h. The properties involving ferroelectric polarization (FP), electrocaloric (EC) effect, energy harvesting performance (EHP) and energy storage performance (ESP) are reported, compared and contrasted. All these features are seen to gradually improve with the increase in AT, and they all reach the climaxed-shaped values and then decrease by further increasing the AT. For t = 40 h, the maximum FP (23.2 µC/cm2) is attained at an electric field of 50 kV/cm, while the high EHP effects (0.297 J/cm3) and positive EC are achieved (for ΔT~0.92 K and ΔS~0.92 J/(K·kg)) at 45 kV/cm. The EHP value of the PLSTT ceramics increased by 21.7% while the polarization value was enhanced by 33.3%. At t = 30 h, the ceramics have attained the best ESP value of 0.468 J/cm3 with an energy loss of 0.05 J/cm3. We strongly believe that the AT plays a crucial role in the optimization of different traits of the PLSTT ceramics.
Collapse
Affiliation(s)
- Zihan Su
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Lingyu Wan
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Fenglai Mo
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Jiayu Li
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Boxun Liu
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Chuangjian Liang
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Jinsong Xu
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Devki N Talwar
- Department of Physics, University of North Florida, Jacksonville, FL 32224, USA
| | - Hang Li
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Huilu Yao
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| |
Collapse
|
2
|
Saha SK, Celata GP. Advances in modelling of biomimetic fluid flow at different scales. NANOSCALE RESEARCH LETTERS 2011; 6:344. [PMID: 21711847 PMCID: PMC3211433 DOI: 10.1186/1556-276x-6-344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/15/2011] [Indexed: 05/31/2023]
Abstract
The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed.
Collapse
Affiliation(s)
- Sujoy Kumar Saha
- Mechanical Engineering Department, Bengal Engineering and Science University, Shibpur, Howrah, West Bengal 711 103, India
| | - Gian Piero Celata
- ENEA Casaccia Research Centre, Institute of Thermal Fluid Dynamics, Office Building F-20, Via Anguillarese 301, S. M. Galeria, Rome 00123, Italy
| |
Collapse
|