Buonanno A, Mogull G, Patil R, Pompili L. Post-Minkowskian Theory Meets the Spinning Effective-One-Body Approach for Bound-Orbit Waveforms.
PHYSICAL REVIEW LETTERS 2024;
133:211402. [PMID:
39642479 DOI:
10.1103/physrevlett.133.211402]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
Driven by advances in scattering amplitudes and worldline-based methods, recent years have seen significant progress in our ability to calculate gravitational two-body scattering observables. These observables effectively encapsulate the gravitational two-body problem in the weak-field and high-velocity regime [post-Minkowskian (PM)], with applications to the bound two-body problem and gravitational-wave modeling. We leverage PM data to construct a complete inspiral-merger-ringdown waveform model for nonprecessing spinning black holes within the effective-one-body (EOB) formalism SEOBNR-PM. This model is closely based on the highly successful SEOBNRv5 model, used by the LIGO-Virgo-KAGRA Collaboration, with its key new feature being an EOB Hamiltonian derived by matching the two-body scattering angle in a perturbative PM expansion. The model performs remarkably well, showing a median mismatch against 441 numerical-relativity (NR) simulations that is somewhat lower than a similarly calibrated version of SEOBNRv5. Comparisons of the binding energy with NR also demonstrate better agreement than SEOBNRv5, despite the latter containing additional calibration to NR simulations.
Collapse