1
|
Searches for Violation of CPT Symmetry and Lorentz Invariance with Astrophysical Neutrinos. UNIVERSE 2022. [DOI: 10.3390/universe8010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neutrinos are a powerful tool for searching physics beyond the standard model of elementary particles. In this review, we present the status of the research on charge-parity-time (CPT) symmetry and Lorentz invariance violations using neutrinos emitted from the collapse of stars such as supernovae and other astrophysical environments, such as gamma-ray bursts. Particularly, supernova neutrino fluxes may provide precious information because all neutrino and antineutrino flavors are emitted during a burst of tens of seconds. Models of quantum gravity may allow the violation of Lorentz invariance and possibly of CPT symmetry. Violation of Lorentz invariance may cause a modification of the dispersion relation and, therefore, in the neutrino group velocity as well in the neutrino wave packet. These changes can affect the arrival time signal registered in astrophysical neutrino detectors. Direction or time-dependent oscillation probabilities and anisotropy of the neutrino velocity are manifestations of the same kind of new physics. CPT violation, on the other hand, may be responsible for different oscillation patterns for neutrino and antineutrino and unconventional energy dependency of the oscillation phase or of the mixing angles. Future perspectives for possible CPT and Lorentz violating systems are also presented.
Collapse
|
2
|
Capozzi F, Li SW, Zhu G, Beacom JF. DUNE as the Next-Generation Solar Neutrino Experiment. PHYSICAL REVIEW LETTERS 2019; 123:131803. [PMID: 31697509 DOI: 10.1103/physrevlett.123.131803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 06/10/2023]
Abstract
We show that the Deep Underground Neutrino Experiment (DUNE), with significant but feasible new efforts, has the potential to deliver world-leading results in solar neutrinos. With a 100 kton-yr exposure, DUNE could detect ≳10^{5} signal events above 5 MeV electron energy. Separate precision measurements of neutrino-mixing parameters and the ^{8}B flux could be made using two detection channels (ν_{e}+^{40}Ar and ν_{e,μ,τ}+e^{-}) and the day-night effect (>10σ). New particle physics may be revealed through the comparison of solar neutrinos (with matter effects) and reactor neutrinos (without), which is discrepant by ∼2σ (and could become 5.6σ). New astrophysics may be revealed through the most precise measurement of the ^{8}B flux (to 2.5%) and the first detection of the hep flux (to 11%). DUNE is required: No other experiment, even proposed, has been shown capable of fully realizing these discovery opportunities.
Collapse
Affiliation(s)
- Francesco Capozzi
- Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
- Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), 80805 München, Germany
| | - Shirley Weishi Li
- Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Guanying Zhu
- Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - John F Beacom
- Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
- Department of Astronomy, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|