1
|
Koren S. Cosmological Lithium Solution from Discrete Gauged B-L. PHYSICAL REVIEW LETTERS 2023; 131:091003. [PMID: 37721837 DOI: 10.1103/physrevlett.131.091003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/10/2023] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
The cosmological lithium problem-that theory predicts a primordial abundance far higher than the observed value-has resisted decades of attempts by cosmologists, nuclear physicists, and astronomers alike to root out systematics. We reconsider this problem in the setting of the standard model extended by gauged baryon minus lepton number, which we spontaneously break by a scalar with charge six. Cosmic strings from this breaking can support interactions converting three protons into three positrons, and we argue that an "electric"-"magnetic" interplay can give this process an amplified, strong-scale cross section in an analog of the Callan-Rubakov effect. We suggest such cosmic strings have disintegrated O(1) of the primordial lithium nuclei, and lay out what is necessary for this scheme to succeed. To our knowledge this is the first new physics mechanism with microphysical justification for the abundance of lithium uniquely to be modified after big bang nucleosynthesis.
Collapse
Affiliation(s)
- Seth Koren
- Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
A Search for Neutron to Mirror Neutron Oscillation Using Neutron Electric Dipole Moment Measurements. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Baryon number violation is a key ingredient of baryogenesis. It has been hypothesized that there could also be a parity-conjugated copy of the standard model particles, called mirror particles. The existence of such a mirror universe has specific testable implications, especially in the domain of neutral particle oscillation, viz. the baryon number violating neutron to mirror-neutron (n−n′) oscillation. Consequently, there were many experiments that have searched for n−n′ oscillation, and imposed constraints upon the parameters that describe it. Recently, further analysis on some of these results have identified anomalies which could point to the detection of n−n′ oscillation. All the previous efforts searched for n−n′ oscillation by comparing the relative number of ultracold neutrons that survive after a period of storage for one or both of the two cases: (i) comparison of zero applied magnetic field to a non-zero applied magnetic field, and (ii) comparison where the orientation of the applied magnetic field was reversed. However, n−n′ oscillations also lead to variations in the precession frequency of polarized neutrons upon flipping the direction of the applied magnetic field. Precession frequencies are measured, very precisely, by experiments searching for the electric dipole moment. For the first time, we used the data from the latest search for the neutron electric dipole moment to constrain n−n′ oscillation. After compensating for the systematic effects that affect the ratio of precession frequencies of ultracold neutrons and cohabiting 199Hg-atoms, chief among which was due to their motion in non-uniform magnetic field, we constrained any further perturbations due to n−n′ oscillation. We thereby provide a lower limit on the n−n′ oscillation time constant of τnn′/|cos(β)|>5.7s,0.36T′<B′<1.01T′ (95% C.L.), where β is the angle between the applied magnetic field and the ambient mirror magnetic field. This constraint is the best available in the range of 0.36T′<B′<0.40T′.
Collapse
|
3
|
Almazán H, Bernard L, Blanchet A, Bonhomme A, Buck C, Del Amo Sanchez P, El Atmani I, Labit L, Lamblin J, Letourneau A, Lhuillier D, Licciardi M, Lindner M, Materna T, Méplan O, Pessard H, Pignol G, Réal JS, Ricol JS, Roca C, Rogly R, Salagnac T, Sarrazin M, Savu V, Schoppmann S, Soldner T, Stutz A, Vialat M. Searching for Hidden Neutrons with a Reactor Neutrino Experiment: Constraints from the STEREO Experiment. PHYSICAL REVIEW LETTERS 2022; 128:061801. [PMID: 35213177 DOI: 10.1103/physrevlett.128.061801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Different extensions of the standard model of particle physics, such as braneworld or mirror matter models, predict the existence of a neutron sterile state, possibly as a dark matter candidate. This Letter reports a new experimental constraint on the probability p for neutron conversion into a hidden neutron, set by the STEREO experiment at the high flux reactor of the Institut Laue-Langevin. The limit is p<3.1×10^{-11} at 95% C.L. improving the previous limit by a factor of 13. This result demonstrates that short-baseline neutrino experiments can be used as competitive passing-through-walls neutron experiments to search for hidden neutrons.
Collapse
Affiliation(s)
- H Almazán
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - L Bernard
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - A Blanchet
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - A Bonhomme
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C Buck
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - P Del Amo Sanchez
- Univ. Savoie Mont Blanc, CNRS, Laboratoire d'Annecy de Physique des Particules - IN2P3, 74000 Annecy, France
| | - I El Atmani
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - L Labit
- Univ. Savoie Mont Blanc, CNRS, Laboratoire d'Annecy de Physique des Particules - IN2P3, 74000 Annecy, France
| | - J Lamblin
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - A Letourneau
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - D Lhuillier
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - M Licciardi
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - M Lindner
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - T Materna
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - O Méplan
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - H Pessard
- Univ. Savoie Mont Blanc, CNRS, Laboratoire d'Annecy de Physique des Particules - IN2P3, 74000 Annecy, France
| | - G Pignol
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - J-S Réal
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - J-S Ricol
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - C Roca
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - R Rogly
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - T Salagnac
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - M Sarrazin
- Institut UTINAM, UMR 6213 CNRS, Université Bourgogne-Franche-Comté, 25000 Besançon, France
- Department of Physics, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - V Savu
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - S Schoppmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - T Soldner
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - A Stutz
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - M Vialat
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| |
Collapse
|