1
|
Trajanovski P, Jolakoski P, Zelenkovski K, Iomin A, Kocarev L, Sandev T. Ornstein-Uhlenbeck process and generalizations: Particle dynamics under comb constraints and stochastic resetting. Phys Rev E 2023; 107:054129. [PMID: 37328979 DOI: 10.1103/physreve.107.054129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/01/2023] [Indexed: 06/18/2023]
Abstract
The Ornstein-Uhlenbeck process is interpreted as Brownian motion in a harmonic potential. This Gaussian Markov process has a bounded variance and admits a stationary probability distribution, in contrast to the standard Brownian motion. It also tends to a drift towards its mean function, and such a process is called mean reverting. Two examples of the generalized Ornstein-Uhlenbeck process are considered. In the first one, we study the Ornstein-Uhlenbeck process on a comb model, as an example of the harmonically bounded random motion in the topologically constrained geometry. The main dynamical characteristics (as the first and the second moments) and the probability density function are studied in the framework of both the Langevin stochastic equation and the Fokker-Planck equation. The second example is devoted to the study of the effects of stochastic resetting on the Ornstein-Uhlenbeck process, including stochastic resetting in the comb geometry. Here the nonequilibrium stationary state is the main question in task, where the two divergent forces, namely, the resetting and the drift towards the mean, lead to compelling results in the cases of both the Ornstein-Uhlenbeck process with resetting and its generalization on the two-dimensional comb structure.
Collapse
Affiliation(s)
- Pece Trajanovski
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
| | - Petar Jolakoski
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
| | - Kiril Zelenkovski
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
| | - Alexander Iomin
- Department of Physics, Technion, Haifa 32000, Israel
- Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
| | - Ljupco Kocarev
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, PO Box 393, 1000 Skopje, Macedonia
| | - Trifce Sandev
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
- Institute of Physics & Astronomy, University of Potsdam, D-14776 Potsdam-Golm, Germany
- Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, Macedonia
| |
Collapse
|
2
|
Zhou T, Xu P, Deng W. Lévy Walk Dynamics in an External Constant Force Field in Non-Static Media. JOURNAL OF STATISTICAL PHYSICS 2022; 187:9. [PMID: 35250092 PMCID: PMC8883250 DOI: 10.1007/s10955-022-02904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Based on the recognition of the huge change of the transport properties for diffusion particles in non-static media, we consider a Lévy walk model subjected to an external constant force in non-static media. Since the physical and comoving coordinates of non-static media are related by scale factor, we equivalently transfer the process from physical coordinate into comoving coordinate and derive the master equation governing the probability density function of the position of the particles in comoving coordinate. Utilizing the Hermite orthogonal polynomial expansions, some statistical properties are obtained, including the asymptotic behaviors of the first two moments in both coordinates and kurtosis. For some representative types of non-static media and Lévy walks, the striking and interesting phenomena originating from the interplay between non-static media, external force, and intrinsic stochastic motion are observed. The stationary distribution are also analyzed for some cases through numerical simulations.
Collapse
Affiliation(s)
- Tian Zhou
- Gansu Key Laboratory of Applied Mathematics and Complex Systems, School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Pengbo Xu
- School of Mathematical Sciences, Peking University, Beijing, 100871 People’s Republic of China
| | - Weihua Deng
- Gansu Key Laboratory of Applied Mathematics and Complex Systems, School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|
3
|
Abad E, Angstmann CN, Henry BI, McGann AV, Le Vot F, Yuste SB. Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains. Phys Rev E 2020; 102:032111. [PMID: 33075977 DOI: 10.1103/physreve.102.032111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023]
Abstract
Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domain that is evolving. The model equations, which have been derived from generalized continuous time random walks, can incorporate complexities such as subdiffusive transport and inhomogeneous domain stretching and shrinking. Inhomogeneously growing domains are frequently encountered in biological phenomena involving stochastic transport, such as tumor growth and morphogen gradient formation. A method for constructing analytic expressions for short-time moments of the position of the particles is developed and moments calculated from this approach are shown to compare favorably with results from random walk simulations and numerical integration of the reaction transport equation. The results show the important role played by the initial condition. In particular, it strongly affects the time dependence of the moments in the short-time regime by introducing additional drift and diffusion terms. We also discuss how our reaction transport equation could be applied to study the spreading of a population on an evolving interface. From a more general perspective, our findings help to mitigate the scarcity of analytic results for reaction-diffusion problems in geometries displaying nonuniform growth. They are also expected to pave the way for further results, including the treatment of first-passage problems associated with encounter-controlled reactions in such domains.
Collapse
Affiliation(s)
- E Abad
- Departamento de Física Aplicada and Instituto de Computación Científica Avanzada, Centro Universitario de Mérida, Universidad de Extremadura, 06800 Mérida, Spain
| | - C N Angstmann
- School of Mathematics and Statistics, UNSW, Sydney New South Wales, 2052, Australia
| | | | | | - F Le Vot
- Departamento de Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain
| | - S B Yuste
- Departamento de Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|