1
|
Malhotra I, Löwen H. Double Mpemba effect in the cooling of trapped colloids. J Chem Phys 2024; 161:164903. [PMID: 39436099 DOI: 10.1063/5.0225749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
The Mpemba effect describes the phenomenon that a system at hot initial temperature cools faster than at an initial warm temperature in the same environment. Such an anomalous cooling has recently been predicted and realized for trapped colloids. Here, we investigate the freezing behavior of a passive colloidal particle by employing numerical Brownian dynamics simulations and theoretical calculations with a model that can be directly tested in experiments. During the cooling process, the colloidal particle exhibits multiple non-monotonic regimes in cooling rates, with the cooling time decreasing twice as a function of the initial temperature-an unexpected phenomenon we refer to as the Double Mpemba effect. In addition, we demonstrate that both the Mpemba and Double Mpemba effects can be predicted by various machine-learning methods, which expedite the analysis of complex, computationally intensive systems.
Collapse
Affiliation(s)
- Isha Malhotra
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Abdoli I, Löwen H, Sommer JU, Sharma A. Tailoring the escape rate of a Brownian particle by combining a vortex flow with a magnetic field. J Chem Phys 2023; 158:101101. [PMID: 36922145 DOI: 10.1063/5.0139830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The probability per unit time for a thermally activated Brownian particle to escape over a potential well is, in general, well-described by Kramers's theory. Kramers showed that the escape time decreases exponentially with increasing barrier height. The dynamics slow down when the particle is charged and subjected to a Lorentz force due to an external magnetic field. This is evident via a rescaling of the diffusion coefficient entering as a prefactor in the Kramers's escape rate without any impact on the barrier-height-dependent exponent. Here, we show that the barrier height can be effectively changed when the charged particle is subjected to a vortex flow. While the vortex alone does not affect the mean escape time of the particle, when combined with a magnetic field, it effectively pushes the fluctuating particle either radially outside or inside depending on its sign relative to that of the magnetic field. In particular, the effective potential over which the particle escapes can be changed to a flat, a stable, and an unstable potential by tuning the signs and magnitudes of the vortex and the applied magnetic field. Notably, the last case corresponds to enhanced escape dynamics.
Collapse
Affiliation(s)
- I Abdoli
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - H Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - J-U Sommer
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - A Sharma
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| |
Collapse
|
3
|
Caprini L, Cecconi F, Marini Bettolo Marconi U. Correlated escape of active particles across a potential barrier. J Chem Phys 2021; 155:234902. [PMID: 34937362 DOI: 10.1063/5.0074072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We study the dynamics of one-dimensional active particles confined in a double-well potential, focusing on the escape properties of the system, such as the mean escape time from a well. We first consider a single-particle both in near and far-from-equilibrium regimes by varying the persistence time of the active force and the swim velocity. A non-monotonic behavior of the mean escape time is observed with the persistence time of the activity, revealing the existence of an optimal choice of the parameters favoring the escape process. For small persistence times, a Kramers-like formula with an effective potential obtained within the unified colored noise approximation is shown to hold. Instead, for large persistence times, we developed a simple theoretical argument based on the first passage theory, which explains the linear dependence of the escape time with the persistence of the active force. In the second part of the work, we consider the escape on two active particles mutually repelling. Interestingly, the subtle interplay of active and repulsive forces may lead to a correlation between particles, favoring the simultaneous jump across the barrier. This mechanism cannot be observed in the escape process of two passive particles. Finally, we find that in the small persistence regime, the repulsion favors the escape, such as in passive systems, in agreement with our theoretical predictions, while for large persistence times, the repulsive and active forces produce an effective attraction, which hinders the barrier crossing.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Heinrich-Heine-University of Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Fabio Cecconi
- Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, I-62032 Camerino, Italy
| | | |
Collapse
|
4
|
Debnath T, Chaudhury P, Mukherjee T, Mondal D, Ghosh PK. Escape kinetics of self-propelled particles from a circular cavity. J Chem Phys 2021; 155:194102. [PMID: 34800947 DOI: 10.1063/5.0070842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We numerically investigate the mean exit time of an inertial active Brownian particle from a circular cavity with single or multiple exit windows. Our simulation results witness distinct escape mechanisms depending on the relative amplitudes of the thermal length and self-propulsion length compared to the cavity and pore sizes. For exceedingly large self-propulsion lengths, overdamped active particles diffuse on the cavity surface, and rotational dynamics solely governs the exit process. On the other hand, the escape kinetics of a very weakly damped active particle is largely dictated by bouncing effects on the cavity walls irrespective of the amplitude of self-propulsion persistence lengths. We show that the exit rate can be maximized for an optimal self-propulsion persistence length, which depends on the damping strength, self-propulsion velocity, and cavity size. However, the optimal persistence length is insensitive to the opening windows' size, number, and arrangement. Numerical results have been interpreted analytically based on qualitative arguments. The present analysis aims at understanding the transport controlling mechanism of active matter in confined structures.
Collapse
Affiliation(s)
- Tanwi Debnath
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Pinaki Chaudhury
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Taritra Mukherjee
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Debasish Mondal
- Department of Chemistry and Center for Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| | - Pulak K Ghosh
- Department of Chemistry, Presidency University, Kolkata 700073, India
| |
Collapse
|
5
|
Maximova E, Postnikov EB, Lavrova AI, Farafonov V, Nerukh D. Protein-Ligand Dissociation Rate Constant from All-Atom Simulation. J Phys Chem Lett 2021; 12:10631-10636. [PMID: 34704768 DOI: 10.1021/acs.jpclett.1c02952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dissociation of a ligand isoniazid from a protein catalase was investigated using all-atom molecular dynamics (MD) simulations. Random acceleration MD (τ-RAMD) was used, in which a random artificial force applied to the ligand facilitates its dissociation. We have suggested a novel approach to extrapolate such obtained dissociation times to the zero-force limit assuming never before attempted universal exponential dependence of the bond strength on the applied force, allowing direct comparison with experimentally measured values. We have found that our calculated dissociation time was equal to 36.1 s with statistically significant values distributed in the interval of 0.2-72.0 s, which quantitatively matches the experimental value of 50 ± 8 s despite the extrapolation over 9 orders of magnitude in time.
Collapse
Affiliation(s)
- Ekaterina Maximova
- Department of Nanobiotechnology, Alferov University, Khlopina Street, 8/3 A, 194021 Saint Petersburg, Russia
- Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Helmholtzstr. 10, 01069 Dresden, Germany
| | - Eugene B Postnikov
- Department of Theoretical Physics, Kursk State University, Radishcheva Street, 33, 305000 Kursk, Russia
| | - Anastasia I Lavrova
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
- Saint-Petersburg State Research Institute of Phthisiopulmonology, 2-4 Ligovskiy Avenue, 194064 Saint-Petersburg, Russia
| | - Vladimir Farafonov
- V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61022, Ukraine
| | - Dmitry Nerukh
- Department of Mathematics, Aston University, Birmingham B4 7ET, U.K
| |
Collapse
|
6
|
Sprenger AR, Fernandez-Rodriguez MA, Alvarez L, Isa L, Wittkowski R, Löwen H. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7066-7073. [PMID: 31975603 DOI: 10.1021/acs.langmuir.9b03617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combining experiments on active colloids, whose propulsion velocity can be controlled via a feedback loop, and the theory of active Brownian motion, we explore the dynamics of an overdamped active particle with a motility that depends explicitly on the particle orientation. In this case, the active particle moves faster when oriented along one direction and slower when oriented along another, leading to anisotropic translational dynamics which is coupled to the particle's rotational diffusion. We propose a basic model of active Brownian motion for orientation-dependent motility. On the basis of this model, we obtain analytical results for the mean trajectories, averaged over the Brownian noise for various initial configurations, and for the mean-square displacements including their non-Gaussian behavior. The theoretical results are found to be in good agreement with the experimental data. Orientation-dependent motility is found to induce significant anisotropy in the particle displacement, mean-square displacement, and non-Gaussian parameter even in the long-time limit. Our findings establish a methodology for engineering complex anisotropic motilities of active Brownian particles, with a potential impact in the study of the swimming behavior of microorganisms subjected to anisotropic driving fields.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | - Laura Alvarez
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Pearce P, Woodhouse FG, Forrow A, Kelly A, Kusumaatmaja H, Dunkel J. Learning dynamical information from static protein and sequencing data. Nat Commun 2019; 10:5368. [PMID: 31772168 PMCID: PMC6879630 DOI: 10.1038/s41467-019-13307-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Many complex processes, from protein folding to neuronal network dynamics, can be described as stochastic exploration of a high-dimensional energy landscape. Although efficient algorithms for cluster detection in high-dimensional spaces have been developed over the last two decades, considerably less is known about the reliable inference of state transition dynamics in such settings. Here we introduce a flexible and robust numerical framework to infer Markovian transition networks directly from time-independent data sampled from stationary equilibrium distributions. We demonstrate the practical potential of the inference scheme by reconstructing the network dynamics for several protein-folding transitions, gene-regulatory network motifs, and HIV evolution pathways. The predicted network topologies and relative transition time scales agree well with direct estimates from time-dependent molecular dynamics data, stochastic simulations, and phylogenetic trees, respectively. Owing to its generic structure, the framework introduced here will be applicable to high-throughput RNA and protein-sequencing datasets, and future cryo-electron microscopy (cryo-EM) data.
Collapse
Affiliation(s)
- Philip Pearce
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139-4307, USA
| | - Francis G Woodhouse
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG, UK
| | - Aden Forrow
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139-4307, USA.,Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG, UK
| | - Ashley Kelly
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - Halim Kusumaatmaja
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139-4307, USA.
| |
Collapse
|