1
|
Karpova AV, Akimenko SS, Uliankina AI, Myshlyavtsev AV. Extending Tensor Network Methods Beyond Pairwise Interactions in Adsorption Systems. J Phys Chem A 2025; 129:3345-3352. [PMID: 40168638 DOI: 10.1021/acs.jpca.4c08371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Accurate modeling of complex physical systems often requires accounting for many-body interactions. Traditional statistical physics methods, such as Monte Carlo, transfer matrix, cluster approximations, and others, face significant computational challenges. This study introduces a unified tensor algorithm that efficiently incorporates interactions up to the third nearest neighbor. We applied our algorithm to a system of 1,3,5-tris(4-pyridyl)benzene and copper on Au(111). Many-body interactions were considered in two ways: by expressing them through pairwise interactions and by explicitly considering DFT energies for each many-body configuration. This led to both quantitative and qualitative differences in the results. The most significant difference is the lower thermal stability of the "superflower" phase and its subsequent replacement by a disordered structure with higher density. The developed unified tensor algorithm opens up new possibilities for the accurate modeling of complex systems taking into account many-body interactions.
Collapse
Affiliation(s)
- Anastasiia V Karpova
- Omsk State Technical University, 11 Mira Avenue, Omsk 644050, Russian Federation
| | - Sergey S Akimenko
- Omsk State Technical University, 11 Mira Avenue, Omsk 644050, Russian Federation
| | | | | |
Collapse
|
2
|
Gorbunov VA, Uliankina AI, Akimenko SS, Myshlyavtsev AV. Tensor renormalization group study of orientational ordering in simple models of adsorption monolayers. Phys Rev E 2023; 108:014133. [PMID: 37583228 DOI: 10.1103/physreve.108.014133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023]
Abstract
A simple lattice model of the orientational ordering in organic adsorption layers that considers the directionality of intermolecular interactions is proposed. The symmetry and the number of rotational states of the adsorbed molecule are the main parameters of the model. The model takes into account both the isotropic and directional contributions to the molecule-molecule interaction potential. Using several special cases of this model, we have shown that the tensor renormalization group (TRG) approach can be successfully used for the analysis of orientational ordering in organic adsorption layers with directed intermolecular interactions. Adsorption isotherms, potential energy, and entropy have been calculated for the model adsorption layers differing in the molecule symmetry and the number of rotational states. The calculated thermodynamic characteristics show that entropy effects play a significant role in the self-assembly of dense phases of the molecular layers. All the results obtained with the TRG have been verified by the standard Monte Carlo method. The proposed model reproduces the main features of the phase behavior of the real adsorption layers of benzoic, terephthalic, and trimesic acids on a homogeneous surface of metal single crystals and graphite.
Collapse
Affiliation(s)
- V A Gorbunov
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, 11 Mira Avenue, Omsk 644050, Russian Federation
| | - A I Uliankina
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, 11 Mira Avenue, Omsk 644050, Russian Federation
| | - S S Akimenko
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, 11 Mira Avenue, Omsk 644050, Russian Federation
| | - A V Myshlyavtsev
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, 11 Mira Avenue, Omsk 644050, Russian Federation
| |
Collapse
|
3
|
Akimenko SS. Tensor network construction for lattice gas models: Hard-core and triangular lattice models. Phys Rev E 2023; 107:054116. [PMID: 37329059 DOI: 10.1103/physreve.107.054116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/21/2023] [Indexed: 06/18/2023]
Abstract
The representation of complex lattice models in the form of a tensor network is a promising approach to the analysis of the thermodynamics of such systems. Once the tensor network is built, various methods can be used to calculate the partition function of the corresponding model. However, it is possible to build the initial tensor network in different ways for the same model. In this work, we have proposed two ways of constructing tensor networks and demonstrated that the construction process affects the accuracy of calculations. For demonstration purposes, we have done a brief study of the 4 nearest-neighbor (NN) and 5NN models, where adsorbed particles exclude all sites up to the fourth and fifth nearest neighbors from being occupied by another particle. In addition, we have studied a 4NN model with finite repulsions with a fifth neighbor. In a sense, this model is intermediate between 4NN and 5NN models, so algorithms designed for systems with hard-core interactions may experience difficulties. We have obtained adsorption isotherms, as well as graphs of entropy and heat capacity for all models. The critical values of the chemical potential were determined from the position of the heat capacity peaks. As a result, we were able to improve our previous estimate of the position of the phase transition points for the 4NN and 5NN models. And in the model with finite interactions, we found the presence of two first-order phase transitions and made an estimate of the critical values of the chemical potential for them.
Collapse
Affiliation(s)
- Sergey S Akimenko
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, Mira Ave. 11, Omsk 644050, Russian Federation
| |
Collapse
|
4
|
Jaleel AAA, Mandal D, Thomas JE, Rajesh R. Freezing phase transition in hard-core lattice gases on the triangular lattice with exclusion up to seventh next-nearest neighbor. Phys Rev E 2022; 106:044136. [PMID: 36397521 DOI: 10.1103/physreve.106.044136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Hard-core lattice-gas models are minimal models to study entropy-driven phase transitions. In the k-nearest-neighbor lattice gas, a particle excludes all sites up to the kth next-nearest neighbors from being occupied by another particle. As k increases from one, it extrapolates from nearest-neighbor exclusion to the hard-sphere gas. In this paper we study the model on the triangular lattice for k≤7 using a flat histogram algorithm that includes cluster moves. Earlier studies focused on k≤3. We show that for 4≤k≤7, the system undergoes a single phase transition from a low-density fluid phase to a high-density sublattice-ordered phase. Using partition function zeros and nonconvexity properties of the entropy, we show that the transitions are discontinuous. The critical chemical potential, coexistence densities, and critical pressure are determined accurately.
Collapse
Affiliation(s)
- Asweel Ahmed A Jaleel
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- Department of Physics, Sadakathullah Appa College, Tirunelveli, Tamil Nadu 627011, India
| | - Dipanjan Mandal
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jetin E Thomas
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - R Rajesh
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
5
|
Akimenko SS, Myshlyavtsev AV, Myshlyavtseva MD, Gorbunov VA, Podgornyi SO, Solovyeva OS. Triangles on a triangular lattice: Insights into self-assembly in two dimensions driven by shape complementarity. Phys Rev E 2022; 105:044104. [PMID: 35590604 DOI: 10.1103/physreve.105.044104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
A series of models for reversible filling of a triangular lattice with equilateral triangles has been developed and investigated. There are eight distinct models that vary in the set of prohibitions. In zeroth approximation, these models allow one to estimate the influence of the particles' shape and complementarity of their pair configurations on the self-assembly of dense monolayers formed by reversible filling. The most symmetrical models were found to be equivalent to hard-disk models on the hexagonal lattice. When any contact of hard triangles by vertices is prohibited, the dense monolayers are disordered, and their entropy tends to the constant. If only one pair configuration is prohibited, the close-packed layer appears through the continuous phase transition. In other cases, the weak first-order transition resulting in the self-assembly of close-packed layers is observed.
Collapse
Affiliation(s)
- S S Akimenko
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, Mira Avenue 11, Omsk 644050, Russian Federation
| | - A V Myshlyavtsev
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, Mira Avenue 11, Omsk 644050, Russian Federation
| | - M D Myshlyavtseva
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, Mira Avenue 11, Omsk 644050, Russian Federation
| | - V A Gorbunov
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, Mira Avenue 11, Omsk 644050, Russian Federation
| | - S O Podgornyi
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, Mira Avenue 11, Omsk 644050, Russian Federation
| | - O S Solovyeva
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, Mira Avenue 11, Omsk 644050, Russian Federation
| |
Collapse
|
6
|
Jaleel AAA, Mandal D, Rajesh R. Hard core lattice gas with third next-nearest neighbor exclusion on triangular lattice: One or two phase transitions? J Chem Phys 2021; 155:224101. [PMID: 34911313 DOI: 10.1063/5.0066098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We obtain the phase diagram of the hard core lattice gas with third nearest neighbor exclusion on the triangular lattice using Monte Carlo simulations that are based on a rejection-free flat histogram algorithm. In a recent paper [Darjani et al., J. Chem. Phys. 151, 104702 (2019)], it was claimed that the lattice gas with third nearest neighbor exclusion undergoes two phase transitions with increasing density with the phase at intermediate densities exhibiting hexatic order with continuously varying exponents. Although a hexatic phase is expected when the exclusion range is large, it has not been seen earlier in hard core lattice gases with short range exclusion. In this paper, by numerically determining the entropies for all densities, we show that there is only a single phase transition in the system between a low-density fluid phase and a high density ordered sublattice phase and that a hexatic phase is absent. The transition is shown to be first order in nature, and the critical parameters are determined accurately.
Collapse
Affiliation(s)
- Asweel Ahmed A Jaleel
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Dipanjan Mandal
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| |
Collapse
|
7
|
Jaleel AAA, Thomas JE, Mandal D, Sumedha, Rajesh R. Rejection-free cluster Wang-Landau algorithm for hard-core lattice gases. Phys Rev E 2021; 104:045310. [PMID: 34781550 DOI: 10.1103/physreve.104.045310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 11/07/2022]
Abstract
We introduce a rejection-free, flat histogram, cluster algorithm to determine the density of states of hard-core lattice gases. We show that the algorithm is able to efficiently sample low entropy states that are usually difficult to access, even when the excluded volume per particle is large. The algorithm is based on simultaneously evaporating all the particles in a strip and reoccupying these sites with a new appropriately chosen configuration. We implement the algorithm for the particular case of the hard-core lattice gas in which the first k next-nearest neighbors of a particle are excluded from being occupied. It is shown that the algorithm is able to reproduce the known results for k=1,2,3 both on the square and cubic lattices. We also show that, in comparison, the corresponding flat histogram algorithms with either local moves or unbiased cluster moves are less accurate and do not converge as the system size increases.
Collapse
Affiliation(s)
- Asweel Ahmed A Jaleel
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Jetin E Thomas
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipanjan Mandal
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sumedha
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.,School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
8
|
Dhar D, Rajesh R. Entropy of fully packed hard rigid rods on d-dimensional hypercubic lattices. Phys Rev E 2021; 103:042130. [PMID: 34005993 DOI: 10.1103/physreve.103.042130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/22/2021] [Indexed: 11/07/2022]
Abstract
We determine the asymptotic behavior of the entropy of full coverings of a L×M square lattice by rods of size k×1 and 1×k, in the limit of large k. We show that full coverage is possible only if at least one of L and M is a multiple of k, and that all allowed configurations can be reached from a standard configuration of all rods being parallel, using only basic flip moves that replace a k×k square of parallel horizontal rods by vertical rods, and vice versa. In the limit of large k, we show that the entropy per site S_{2}(k) tends to Ak^{-2}lnk, with A=1. We conjecture, based on a perturbative series expansion, that this large-k behavior of entropy per site is superuniversal and continues to hold on all d-dimensional hypercubic lattices, with d≥2.
Collapse
Affiliation(s)
- Deepak Dhar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
9
|
Rodrigues NT, Oliveira TJ. Husimi-lattice solutions and the coherent-anomaly-method analysis for hard-square lattice gases. Phys Rev E 2021; 103:032153. [PMID: 33862763 DOI: 10.1103/physreve.103.032153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
Although lattice gases composed of particles preventing up to their kth nearest neighbors from being occupied (the kNN models) have been widely investigated in the literature, the location and the universality class of the fluid-columnar transition in the 2NN model on the square lattice are still a topic of debate. Here, we present grand-canonical solutions of this model on Husimi lattices built with diagonal square lattices, with 2L(L+1) sites, for L⩽7. The systematic sequence of mean-field solutions confirms the existence of a continuous transition in this system, and extrapolations of the critical chemical potential μ_{2,c}(L) and particle density ρ_{2,c}(L) to L→∞ yield estimates of these quantities in close agreement with previous results for the 2NN model on the square lattice. To confirm the reliability of this approach, we employ it also for the 1NN model, where very accurate estimates for the critical parameters μ_{1,c} and ρ_{1,c}-for the fluid-solid transition in this model on the square lattice-are found from extrapolations of data for L⩽6. The nonclassical critical exponents for these transitions are investigated through the coherent anomaly method (CAM), which in the 1NN case yields β and ν differing by at most 6% from the expected Ising exponents. For the 2NN model, the CAM analysis is somewhat inconclusive, because the exponents sensibly depend on the value of μ_{2,c} used to calculate them. Notwithstanding, our results suggest that β and ν are considerably larger than the Ashkin-Teller exponents reported in numerical studies of the 2NN system.
Collapse
Affiliation(s)
- Nathann T Rodrigues
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.,Instituto de Física and National Institute of Science and Technology for Complex Systems, Universidade Federal Fluminense, 24210-346 Niterói, Rio de Janeiro, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
10
|
Darjani S, Koplik J, Pauchard V, Banerjee S. Adsorption kinetics and thermodynamic properties of a binary mixture of hard-core particles on a square lattice. J Chem Phys 2021; 154:074705. [PMID: 33607911 DOI: 10.1063/5.0039706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The adsorption kinetics and thermodynamic properties of a binary mixture on a square lattice are studied using the random sequential adsorption with surface diffusion (RSAD). We compare the adsorption of binary species with different equilibrium rate constants and effective rates of adsorption to a surface and find that the temporal evolution of surface coverages of both species can be obtained through the use of the blocking function of a system with irreversible adsorption of highly diffusive particles. Binary mixtures, when one of the components follows the random sequential adsorption (RSA) without surface diffusion and the other follows the RSAD model, display competitive adsorption in addition to cooperative phenomena. Specifically, (i) species replacement occurs over a long period of time, while the total coverage remains unchanged after a short time, (ii) the presence of the RSAD component shifts the jamming coverage to the higher values, and (iii) the maximum jamming coverage is obtained when the effective adsorption of the RSA type components is lower than the other adsorbing particles.
Collapse
Affiliation(s)
- Shaghayegh Darjani
- Energy Institute and Department of Chemical Engineering, City College of New York, New York, New York 10031, USA
| | - Joel Koplik
- Benjamin Levich Institute and Department of Physics, City College of New York, New York, New York 10031, USA
| | - Vincent Pauchard
- Energy Institute and Department of Chemical Engineering, City College of New York, New York, New York 10031, USA
| | - Sanjoy Banerjee
- Energy Institute and Department of Chemical Engineering, City College of New York, New York, New York 10031, USA
| |
Collapse
|
11
|
Zhdanov VP. Nanocrystallites, adsorption, surface tension, and Wulff rule. Phys Rev E 2021; 103:012802. [PMID: 33601602 DOI: 10.1103/physreve.103.012802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
Chemisorption on the surface of metal nanocrystallites (NCs) sometimes induces their reshaping. This interesting phenomenon was observed experimentally in various systems. Related theoretical studies imply that it can be described using the Wulff rule with the surface tension dependent on the coverage of the NC facets by adsorbate. There is, however, no agreement as to how the surface tension should be calculated in this case. Relying on the laws of statistical physics, I clarify the situation in this area in general and also in the framework of the mean-field approximation in three situations: (i) with adsorption-desorption equilibrium, (ii) with a fixed amount of adsorbate at a NC, and (iii) with a fixed amount of adsorbate at facets of a NC. Under these conditions, the surface tension is shown to be described by the same expressions.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
12
|
Akimenko SS, Anisimova GD, Fadeeva AI, Fefelov VF, Gorbunov VA, Kayumova TR, Myshlyavtsev AV, Myshlyavtseva MD, Stishenko PV. SuSMoST: Surface Science Modeling and Simulation Toolkit. J Comput Chem 2020; 41:2084-2097. [PMID: 32619046 DOI: 10.1002/jcc.26370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
We present to the scientific community the Surface Science Modeling and Simulation Toolkit (SuSMoST), which includes a number of utilities and implementations of statistical physics algorithms and models. With SuSMoST it is possible to predict or explain the structure and thermodynamic properties of adsorption layers. SuSMoST automatically builds formal graph and tensor-network models based on atomic description of adsorption complexes and helps to do ab initio calculations of interactions between adsorbed species. Using methods of various nature SuSMoST generates representative samples of adsorption layers and computes its thermodynamic quantities such as mean energy, coverage, density, and heat capacity. From these data one can plot phase diagrams of adsorption systems, assess thermal stability of self-assembled structures, simulate thermal desorption spectra, and so forth.
Collapse
Affiliation(s)
- Sergey S Akimenko
- Department of Chemical Engineering, Omsk State Technical University, Omsk, Russia
| | - Galina D Anisimova
- Department of Chemical Engineering, Omsk State Technical University, Omsk, Russia
| | - Anastasiya I Fadeeva
- Department of Chemical Engineering, Omsk State Technical University, Omsk, Russia
| | - Vasiliy F Fefelov
- Department of Chemical Engineering, Omsk State Technical University, Omsk, Russia
| | - Vitaliy A Gorbunov
- Department of Chemical Engineering, Omsk State Technical University, Omsk, Russia
| | - Tatyana R Kayumova
- Department of Chemical Engineering, Omsk State Technical University, Omsk, Russia
| | | | | | - Pavel V Stishenko
- Department of Chemical Engineering, Omsk State Technical University, Omsk, Russia
| |
Collapse
|
13
|
Thewes FC, Fernandes HCM. Phase transitions in hard-core lattice gases on the honeycomb lattice. Phys Rev E 2020; 101:062138. [PMID: 32688552 DOI: 10.1103/physreve.101.062138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/30/2020] [Indexed: 11/07/2022]
Abstract
We study lattice gas systems on the honeycomb lattice where particles exclude neighboring sites up to order k (k=1,...,5) from being occupied by another particle. Monte Carlo simulations were used to obtain phase diagrams and characterize phase transitions as the system orders at high packing fractions. For systems with first-neighbors exclusion (1NN), we confirm previous results suggesting a continuous transition in the two-dimensional Ising universality class. Exclusion up to second neighbors (2NN) lead the system to a two-step melting process where, first, a high-density columnar phase undergoes a first-order phase transition with nonstandard scaling to a solidlike phase with short-range ordered domains and, then, to fluidlike configurations with no sign of a second phase transition. 3NN exclusion, surprisingly, shows no phase transition to an ordered phase as density is increased, staying disordered even to packing fractions up to 0.98. The 4NN model undergoes a continuous phase transition with critical exponents close to the three-state Potts model. The 5NN system undergoes two first-order phase transitions, both with nonstandard scaling. We, also, propose a conjecture concerning the possibility of more than one phase transition for systems with exclusion regions further than 5NN based on geometrical aspects of symmetries.
Collapse
Affiliation(s)
- Filipe C Thewes
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051 91501-970, Porto Alegre, RS, Brazil
| | - Heitor C M Fernandes
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|