1
|
Rosa ACP, Brito E, Santana WS, Cruz C. Proof of concept for a nonadditive stochastic model of supercooled liquids. Phys Rev E 2024; 110:014128. [PMID: 39161026 DOI: 10.1103/physreve.110.014128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/10/2024] [Indexed: 08/21/2024]
Abstract
The recently proposed nonadditive stochastic model (NSM) offers a coherent physical interpretation for diffusive phenomena in glass-forming systems. This model presents nonexponential relationships between viscosity, activation energy, and temperature, characterizing the non-Arrhenius behavior observed in supercooled liquids. In this work, we fit the NSM viscosity equation to experimental temperature-dependent viscosity data corresponding to 25 glass-forming liquids and compare the fit parameters with those obtained using the Vogel-Fulcher-Tammann (VFT), Avramov-Milchev (AM), and Mauro-Yue-Ellison-Gupta-Allan (MYEGA) models. The results demonstrate that the NSM provides an effective fitting equation for modeling viscosity experimental data in comparison with other established models (VFT, AM, and MYEGA), characterizing the activation energy in fragile liquids, presenting a reliable indicator of the degree of fragility of the glass-forming liquids.
Collapse
|
2
|
Kumar V, Pal A, Shpielberg O. Arrhenius law for interacting diffusive systems. Phys Rev E 2024; 109:L032101. [PMID: 38632768 DOI: 10.1103/physreve.109.l032101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
Finding the mean time it takes for a particle to escape from a metastable state due to thermal fluctuations is a fundamental problem in physics, chemistry, and biology. Here, we consider the escape rate of interacting diffusive particles, from a deep potential trap within the framework of the macroscopic fluctuation theory-a nonequilibrium hydrodynamic theory. For systems without excluded volume, our investigation reveals adherence to the well-established Arrhenius law. However, in the presence of excluded volume, a universality class emerges, fundamentally altering the escape rate. Remarkably, the modified escape rate within this universality class is independent of the interactions at play. The universality class, demonstrating the importance of excluded volume effects, may bring insights to the interpretation of escape processes in the realm of chemical physics.
Collapse
Affiliation(s)
- Vishwajeet Kumar
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Arnab Pal
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Ohad Shpielberg
- Department of Mathematics and Physics, University of Haifa at Oranim, Kiryat Tivon 3600600, Israel
- Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Abba Khoushy Avenue 199, Haifa 3498838, Israel
| |
Collapse
|
3
|
Bondarchuk I, Bondarchuk S, Vorozhtsov A, Zhukov A. Advanced Fitting Method for the Kinetic Analysis of Thermogravimetric Data. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010424. [PMID: 36615621 PMCID: PMC9823974 DOI: 10.3390/molecules28010424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
The article considered the solution of the inverse problem of chemical kinetics of the analysis of experimental data of a thermogravimetric experiment at a constant sample heating rate. The fitting method for identifying the parameters of a kinetic triplet using the integral method for a model of a solid-state reaction based on the modified Arrhenius equation is described. The effectiveness of the proposed approach was confirmed by solving test cases for low, medium, and high rates of material conversion. Unlike other methods, setting the parameters of the reaction mechanism is not required, as they are determined by the solution. Solutions for real data of TGA studies with high and low sample heating rates were compared with the results obtained by other authors and experimental data. A description of the full cycle of calculations used to identify kinetic parameters from thermogravimetric experimental data is given, from the derivation of calculated relationships to the implementation of a short (three to five formulas) program code for MS Excel spreadsheets. The presented code is easy to verify and reproduce and can be modified to solve various problems.
Collapse
Affiliation(s)
- Ivan Bondarchuk
- Laboratory for High Energy and Special Materials National Research, Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
| | - Sergey Bondarchuk
- Laboratory for High Energy and Special Materials National Research, Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
- Faculty of Biology and Chemistry, Tomsk State Pedagogical University, Kievskaya Str., 60, 634061 Tomsk, Russia
- Correspondence:
| | - Alexander Vorozhtsov
- Laboratory for High Energy and Special Materials National Research, Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
| | - Alexander Zhukov
- Center for Additive Technologies National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
| |
Collapse
|
4
|
Modified Arrhenius Equation in Materials Science, Chemistry and Biology. Molecules 2021; 26:molecules26237162. [PMID: 34885745 PMCID: PMC8658926 DOI: 10.3390/molecules26237162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
The Arrhenius plot (logarithmic plot vs. inverse temperature) is represented by a straight line if the Arrhenius equation holds. A curved Arrhenius plot (mostly concave) is usually described phenomenologically, often using polynomials of T or 1/T. Many modifications of the Arrhenius equation based on different models have also been published, which fit the experimental data better or worse. This paper proposes two solutions for the concave-curved Arrhenius plot. The first is based on consecutive A→B→C reaction with rate constants k1 ≪ k2 at higher temperatures and k1 ≫ k2 (or at least k1 > k2) at lower temperatures. The second is based on the substitution of the temperature T the by temperature difference T − T0 in the Arrhenius equation, where T0 is the maximum temperature at which the Arrheniusprocess under study does not yet occur.
Collapse
|
5
|
Rosa ACP, Cruz C, Santana WS, Brito E, Moret MA. Non-Arrhenius behavior and fragile-to-strong transition of glass-forming liquids. Phys Rev E 2020; 101:042131. [PMID: 32422727 DOI: 10.1103/physreve.101.042131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/03/2020] [Indexed: 11/07/2022]
Abstract
Characterization of the non-Arrhenius behavior of glass-forming liquids is a broad avenue for research toward the understanding of the formation mechanisms of noncrystalline materials. In this context, this paper explores the main properties of the viscosity of glass-forming systems, considering super-Arrhenius diffusive processes. We establish the viscous activation energy as a function of the temperature, measure the degree of fragility of the system, and characterize the fragile-to-strong transition through the standard Angell's plot. Our results show that the non-Arrhenius behavior observed in fragile liquids can be understood through the non-Markovian dynamics that characterize the diffusive processes of these systems. Moreover, the fragile-to-strong transition corresponds to a change in the spatiotemporal range of correlations during the glass transition process.
Collapse
Affiliation(s)
- A C P Rosa
- Grupo de Informação Quântica e Física Estatística, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - C Cruz
- Grupo de Informação Quântica e Física Estatística, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - W S Santana
- Grupo de Informação Quântica e Física Estatística, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - E Brito
- Grupo de Informação Quântica e Física Estatística, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - M A Moret
- Programa de Modelagem Computacional-SENAI-CIMATEC, 41650-010 Salvador, Bahia, Brazil.,Universidade do Estado da Bahia (UNEB), 41150-000 Salvador, Bahia, Brazil
| |
Collapse
|
6
|
From the Kinetic Theory of Gases to the Kinetics of Rate Processes: On the Verge of the Thermodynamic and Kinetic Limits. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25092098. [PMID: 32365840 PMCID: PMC7248839 DOI: 10.3390/molecules25092098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/24/2022]
Abstract
A variety of current experiments and molecular dynamics computations are expanding our understanding of rate processes occurring in extreme environments, especially at low temperatures, where deviations from linearity of Arrhenius plots are revealed. The thermodynamic behavior of molecular systems is determined at a specific temperature within conditions on large volume and number of particles at a given density (the thermodynamic limit): on the other side, kinetic features are intuitively perceived as defined in a range between the extreme temperatures, which limit the existence of each specific phase. In this paper, extending the statistical mechanics approach due to Fowler and collaborators, ensembles and partition functions are defined to evaluate initial state averages and activation energies involved in the kinetics of rate processes. A key step is delayed access to the thermodynamic limit when conditions on a large volume and number of particles are not fulfilled: the involved mathematical analysis requires consideration of the role of the succession for the exponential function due to Euler, precursor to the Poisson and Boltzmann classical distributions, recently discussed. Arguments are presented to demonstrate that a universal feature emerges: Convex Arrhenius plots (super-Arrhenius behavior) as temperature decreases are amply documented in progressively wider contexts, such as viscosity and glass transitions, biological processes, enzymatic catalysis, plasma catalysis, geochemical fluidity, and chemical reactions involving collective phenomena. The treatment expands the classical Tolman’s theorem formulated quantally by Fowler and Guggenheim: the activation energy of processes is related to the averages of microscopic energies. We previously introduced the concept of “transitivity”, a function that compactly accounts for the development of heuristic formulas and suggests the search for universal behavior. The velocity distribution function far from the thermodynamic limit is illustrated; the fraction of molecules with energy in excess of a certain threshold for the description of the kinetics of low-temperature transitions and of non-equilibrium reaction rates is derived. Uniform extension beyond the classical case to include quantum tunneling (leading to the concavity of plots, sub-Arrhenius behavior) and to Fermi and Bose statistics has been considered elsewhere. A companion paper presents a computational code permitting applications to a variety of phenomena and provides further examples.
Collapse
|