1
|
Agoritsas E, Barés J. Loss of memory of an elastic line on its way to limit cycles. Phys Rev E 2024; 109:L042901. [PMID: 38755875 DOI: 10.1103/physreve.109.l042901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/10/2024] [Indexed: 05/18/2024]
Abstract
Oscillatory-driven amorphous materials forget their initial configuration and converge to limit cycles. Here we investigate this memory loss under a nonquasistatic drive in a minimal model system, with quenched disorder and memory encoded in a spatial pattern, where oscillating protocols are formally replaced by a positive-velocity drive. We consider an elastic line driven athermally in a quenched disorder with biperiodic boundary conditions and tunable system size, thus controlling the area swept by the line per cycle as would the oscillation amplitude. The convergence to disorder-dependent limit cycle is strongly coupled to the nature of its velocity dynamics depending on system size. Based on the corresponding phase diagram, we propose a generic scenario for memory formation in disordered systems under finite driving rate.
Collapse
Affiliation(s)
- Elisabeth Agoritsas
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Jonathan Barés
- Laboratoire de Mécanique et Génie Civil (LMGC), UMR 5508 CNRS-University Montpellier, 34095 Montpellier, France
| |
Collapse
|
2
|
Clemmer JT, Robbins MO. Critical Scaling of Solid Fragmentation at Quasistatic and Finite Strain Rates. PHYSICAL REVIEW LETTERS 2022; 129:078002. [PMID: 36018706 DOI: 10.1103/physrevlett.129.078002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/29/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Using two-dimensional simulations of sheared, brittle solids, we characterize the resulting fragmentation and explore its underlying critical nature. Under quasistatic loading, a power-law distribution of fragment masses emerges after fracture which grows with increasing strain. With increasing strain rate, the maximum size of a grain decreases and a shallower distribution is produced. We propose a scaling theory for distributions based on a fractal scaling of the largest mass with system size in the quasistatic limit or with a correlation length that diverges as a power of rate in the finite-rate limit. Critical exponents are measured using finite-size scaling techniques.
Collapse
Affiliation(s)
- Joel T Clemmer
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Mark O Robbins
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
3
|
Savolainen J, Laurson L, Alava M. Effect of thresholding on avalanches and their clustering for interfaces with long-range elasticity. Phys Rev E 2022; 105:054152. [PMID: 35706318 DOI: 10.1103/physreve.105.054152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Avalanches are often defined as signals higher than some detection level in bursty systems. The choice of the detection threshold affects the number of avalanches, but it can also affect their temporal correlations. We simulated the depinning of a long-range elastic interface and applied different thresholds including a zero one on the data to see how the sizes and durations of events change and how this affects temporal avalanche clustering. Higher thresholds result in steeper size and duration distributions and cause the avalanches to cluster temporally. Using methods from seismology, the frequency of the events in the clusters was found to decrease as a power-law of time, and the size of an event in a cluster was found to help predict how many events it is followed by. The results bring closer theoretical studies of this class of models to real experiments, but also highlight how different phenomena can be obtained from the same set of data.
Collapse
Affiliation(s)
- Juha Savolainen
- Department of Applied Physics, Aalto University, PO Box 11000, 00076 Aalto, Finland
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33101 Tampere, Finland
| | - Mikko Alava
- Department of Applied Physics, Aalto University, PO Box 11000, 00076 Aalto, Finland
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, A. Soltana 7, 05-400 Otwock-Swierk, Poland
| |
Collapse
|
4
|
Schimmenti VM, Majumdar SN, Rosso A. Statistical properties of avalanches via the c-record process. Phys Rev E 2021; 104:064129. [PMID: 35030910 DOI: 10.1103/physreve.104.064129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
We study the statistics of avalanches, as a response to an applied force, undergone by a particle hopping on a one-dimensional lattice where the pinning forces at each site are independent and identically distributed (i.i.d.), each drawn from a continuous f(x). The avalanches in this model correspond to the interrecord intervals in a modified record process of i.i.d. variables, defined by a single parameter c>0. This parameter characterizes the record formation via the recursive process R_{k}>R_{k-1}-c, where R_{k} denotes the value of the kth record. We show that for c>0, if f(x) decays slower than an exponential for large x, the record process is nonstationary as in the standard c=0 case. In contrast, if f(x) has a faster than exponential tail, the record process becomes stationary and the avalanche size distribution π(n) has a decay faster than 1/n^{2} for large n. The marginal case where f(x) decays exponentially for large x exhibits a phase transition from a nonstationary phase to a stationary phase as c increases through a critical value c_{crit}. Focusing on f(x)=e^{-x} (with x≥0), we show that c_{crit}=1 and for c<1, the record statistics is nonstationary. However, for c>1, the record statistics is stationary with avalanche size distribution π(n)∼n^{-1-λ(c)} for large n. Consequently, for c>1, the mean number of records up to N steps grows algebraically ∼N^{λ(c)} for large N. Remarkably, the exponent λ(c) depends continuously on c for c>1 and is given by the unique positive root of c=-ln(1-λ)/λ. We also unveil the presence of nontrivial correlations between avalanches in the stationary phase that resemble earthquake sequences.
Collapse
Affiliation(s)
| | | | - Alberto Rosso
- Université Paris-Saclay, CNRS, LPTMS, 91405 Orsay, France
| |
Collapse
|
5
|
Jovković D, Janićević S, Mijatović S, Laurson L, Spasojević D. Effects of external noise on threshold-induced correlations in ferromagnetic systems. Phys Rev E 2021; 103:062114. [PMID: 34271613 DOI: 10.1103/physreve.103.062114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/17/2021] [Indexed: 11/07/2022]
Abstract
In the present paper we investigate the impact of the external noise and detection threshold level on the simulation data for the systems that evolve through metastable states. As a representative model of such systems we chose the nonequilibrium athermal random-field Ising model with two types of the external noise, uniform white noise and Gaussian white noise with various different standard deviations, imposed on the original response signal obtained in model simulations. We applied a wide range of detection threshold levels in analysis of the signal and show how these quantities affect the values of exponent γ_{S/T} (describing the scaling of the average avalanche size with duration), the shift of waiting time between the avalanches, and finally the collapses of the waiting time distributions. The results are obtained via extensive numerical simulations on the equilateral three-dimensional cubic lattices of various sizes and disorders.
Collapse
Affiliation(s)
- Dragutin Jovković
- Faculty of Mining and Geology, University of Belgrade, P.O. Box 162, 11000 Belgrade, Serbia
| | - Sanja Janićević
- Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Svetislav Mijatović
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Djordje Spasojević
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| |
Collapse
|
6
|
Barés J, Bonamy D. Controlling crackling dynamics by triggering low-intensity avalanches. Phys Rev E 2021; 103:053001. [PMID: 34134297 DOI: 10.1103/physreve.103.053001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/23/2021] [Indexed: 11/07/2022]
Abstract
We examine the effect of small, spatially localized excitations applied periodically in different manners, on the crackling dynamics of a brittle crack driven slowly in a heterogeneous solid. When properly adjusted, these excitations are observed to radically modify avalanche statistics and considerably limit the magnitude of the largest events. Surprisingly, this does not require information on the front loading state at the time of excitation; applying it either at a random location or at the most loaded point gives the same results. Subsequently, we unravel how the excitation amplitude, spatial extent, and frequency govern the effect. We find that the excitation efficiency is ruled by a single reduced parameter, namely the injected power per unit front length; the suppression of extreme avalanches is maximum at a well-defined optimal value of this control parameter. analysis opens another way to control the largest events in crackling dynamics. Beyond fracture problems, it may be relevant for crackling systems described by models of the same universality class, such as the wetting of heterogeneous substrates or magnetic walls in amorphous magnets.
Collapse
Affiliation(s)
- Jonathan Barés
- Laboratoire de Mécanique et Génie Civil, UMR 5508 CNRS-University Montpellier, 34095 Montpellier, France
| | - Daniel Bonamy
- Service de Physique de l'État Condensée, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
7
|
Dubois A, Bonamy D. Dynamic crack growth along heterogeneous planar interfaces: Interaction with unidimensional strips. Phys Rev E 2021; 103:013004. [PMID: 33601604 DOI: 10.1103/physreve.103.013004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/21/2020] [Indexed: 11/07/2022]
Abstract
We examine theoretically and numerically fast propagation of a tensile crack along unidimensional strips with periodically evolving toughness. In such dynamic fracture regimes, crack front waves form and transport front disturbances along the crack edge at speed less than the Rayleigh wave speed and depending on the crack speed. In this configuration, standing front waves dictate the spatiotemporal evolution of the local crack front speed, which takes a specific scaling form. Analytical examination of both the short-time and long-time limits of the problem reveals the parameter dependency with strip wavelength, toughness contrast and overall fracture speed. Implications and generalization to unidimensional strips of arbitrary shape are lastly discussed.
Collapse
Affiliation(s)
- Alizée Dubois
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191, Gif-sur-Yvette, France.,ENS Lyon, CNRS, Laboratoire de Physique, UMR 5672, F-69364 Lyon, France
| | - Daniel Bonamy
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Baban NS, Orozaliev A, Stubbs CJ, Song YA. Understanding interfacial fracture behavior between microinterlocked soft layers using physics-based cohesive zone modeling. Phys Rev E 2020; 102:012801. [PMID: 32794903 DOI: 10.1103/physreve.102.012801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Abstract
We examine the underlying fracture mechanics of the human skin dermal-epidermal layer's microinterlocks using a physics-based cohesive zone finite-element model. Using microfabrication techniques, we fabricated highly dense arrays of spherical microstructures of radius ≈50μm without and with undercuts, which occur in an open spherical cavity whose centroid lies below the microstructure surface to create microinterlocks in polydimethylsiloxane layers. From experimental peel tests, we find that the maximum density microinterlocks without and with undercuts enable the respective ≈4-fold and ≈5-fold increase in adhesion strength as compared to the plain layers. Critical visualization of the single microinterlock fracture from the cohesive zone model reveals a contact interaction-based phenomena where the primary propagating crack is arrested and the secondary crack is initiated in the microinterlocked area. Strain energy energetics confirmed significantly lower strain energy dissipation for the microinterlock with the undercut as compared to its nonundercut counterpart. These phenomena are completely absent in a plain interface fracture where the fracture propagates catastrophically without any arrests. These events confirm the difference in the experimental results corroborated by the Cook-Gordon mechanism. The findings from the cohesive zone simulation provide deeper insights into soft microinterlock fracture mechanics that could prominently help in the rational designing of sutureless skin grafts and electronic skin.
Collapse
Affiliation(s)
- Navajit S Baban
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Mechanical and Aerospace Engineering, New York University, New York, New York 11201, USA
| | - Ajymurat Orozaliev
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Christopher J Stubbs
- Department of Mechanical Engineering, University of Idaho, Moscow, Idaho 83848, USA
| | - Yong Ak Song
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Chemical and Biomolecular Engineering, New York University, New York, New York 11201, USA
| |
Collapse
|
9
|
Le Priol C, Chopin J, Le Doussal P, Ponson L, Rosso A. Universal Scaling of the Velocity Field in Crack Front Propagation. PHYSICAL REVIEW LETTERS 2020; 124:065501. [PMID: 32109111 DOI: 10.1103/physrevlett.124.065501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/11/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
The propagation of a crack front in disordered materials is jerky and characterized by bursts of activity, called avalanches. These phenomena are the manifestation of an out-of-equilibrium phase transition originated by the disorder. As a result avalanches display universal scalings which are, however, difficult to characterize in experiments at a finite drive. Here, we show that the correlation functions of the velocity field along the front allow us to extract the critical exponents of the transition and to identify the universality class of the system. We employ these correlations to characterize the universal behavior of the transition in simulations and in an experiment of crack propagation. This analysis is robust, efficient, and can be extended to all systems displaying avalanche dynamics.
Collapse
Affiliation(s)
- Clément Le Priol
- CNRS-Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex, France
| | - Julien Chopin
- Instituto de Física, Universidade Federal da Bahia, Salvador-BA, 40170-115, Brazil
| | - Pierre Le Doussal
- CNRS-Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex, France
| | - Laurent Ponson
- Institut Jean le Rond d'Alembert, Sorbonne Université, 75252 Paris Cedex 05, France
| | - Alberto Rosso
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|