1
|
Song J, Yan Z. Formation, propagation, and excitation of matter solitons and rogue waves in chiral BECs with a current nonlinearity trapped in external potentials. CHAOS (WOODBURY, N.Y.) 2023; 33:103132. [PMID: 37870999 DOI: 10.1063/5.0166738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
In this paper, we investigate formation and propagation of matter solitons and rogue waves (RWs) in chiral Bose-Einstein condensates modulated by different external potentials, modeled by the chiral Gross-Pitaevskii (GP) equation with the current nonlinearity and external potentials. On the one hand, the introduction of two potentials (Pöschl-Teller and harmonic-Gaussian potentials) enables the discovery of exact soliton solutions in both focusing and defocusing cases. We analyze the interplay effects of current nonlinearity and potential on soliton stability via associated Bogoliubov-de Gennes equations. Moreover, multiple families of numerical solitons (ground-state and dipole modes) trapped in potentials are found, exhibiting distinctive structures. The interactions between solitons trapped in potentials are studied, which exhibit the inelastic trajectories and repulsive interactions. On the other hand, we introduce the time-dependent potentials such that the controlled RWs are found in both focusing and defocusing GP equations with current nonlinearity. Furthermore, through the interaction between potentials and current nonlinearity, it is possible to enlarge the region of modulational instability, leading to the generation of RWs and chiral solitons. High-order RWs are generated from several Gaussian perturbations on a continuous wave. The presence of current nonlinearity disrupts the structures of these high-order RWs, causing them to undergo a transform into chiral lower-amplitude solitons. Finally, various types of soliton excitations are investigated by varying the strengths of potential and current nonlinearity, showing the abundant dynamic transforms of chrital matter solitons.
Collapse
Affiliation(s)
- Jin Song
- KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenya Yan
- KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Tabi CB, Wamba E, Nare E, Kofané TC. Interplay between spin-orbit couplings and residual interatomic interactions in the modulational instability of two-component Bose-Einstein condensates. Phys Rev E 2023; 107:044206. [PMID: 37198763 DOI: 10.1103/physreve.107.044206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/21/2023] [Indexed: 05/19/2023]
Abstract
The nonlinear dynamics induced by the modulation instability (MI) of a binary mixture in an atomic Bose-Einstein condensate (BEC) is investigated theoretically under the joint effects of higher-order residual nonlinearities and helicoidal spin-orbit (SO) coupling in a regime of unbalanced chemical potential. The analysis relies on a system of modified coupled Gross-Pitaevskii equations on which the linear stability analysis of plane-wave solutions is performed, from which an expression of the MI gain is obtained. A parametric analysis of regions of instability is carried out, where effects originating from the higher-order interactions and the helicoidal spin-orbit coupling are confronted under different combinations of the signs of the intra- and intercomponent interaction strengths. Direct numerical calculations on the generic model support our analytical predictions and show that the higher-order interspecies interaction and the SO coupling can balance each other suitably for stability to take place. Mainly, it is found that the residual nonlinearity preserves and reinforces the stability of miscible pairs of condensates with SO coupling. Additionally, when a miscible binary mixture of condensates with SO coupling is modulationally unstable, the presence of residual nonlinearity may help soften such instability. Our results finally suggest that MI-induced formation of stable solitons in mixtures of BECs with two-body attraction may be preserved by the residual nonlinearity even though the latter enhances the instability.
Collapse
Affiliation(s)
- Conrad Bertrand Tabi
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
| | - Etienne Wamba
- Faculty of Engineering and Technology, University of Buea, P.O. Box 63, Buea, Cameroon
- STIAS, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Emmanual Nare
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
| | - Timoléon Crépin Kofané
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
- Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
- Centre d'Excellence Africain en Technologies de l'Information et de la Communication, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
3
|
Li XX, Cheng RJ, Ma JL, Zhang AX, Xue JK. Solitary matter wave in spin-orbit-coupled Bose-Einstein condensates with helicoidal gauge potential. Phys Rev E 2021; 104:034214. [PMID: 34654141 DOI: 10.1103/physreve.104.034214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/13/2021] [Indexed: 11/07/2022]
Abstract
We analytically and numerically study the different types of solitary wave in the two-component helicoidal spin-orbit coupled Bose-Einstein condensates (BECs). Adopting the multiscale perturbation method, we derive the analytical bright and dark solitary wave solutions of the system, and the stationary and moving bright (dark) solitary waves are obtained. The effects of spin-orbit coupling, the helicoidal gauge potential, the momentum, the Zeeman splitting, and the atomic interactions on the solitary wave types are discussed, and it is found that the coupling of these physical parameters can manipulate different types of solitary waves in the system. The results indicate that the helicoidal gauge potential breaks the symmetric properties of the energy band of the system and adjusts the energy band structure, thus further effecting the solitary wave properties, i.e., stationary or moving solitary wave, bright, or dark solitary wave. Correspondingly, the analytical predictions for exciting stationary or moving bright (dark) solitary wave in parameter space are obtained. In particular, the helicoidal gauge potential changes the solitary wave types drastically for the weak spin-orbit coupling, i.e., in the absence of the helicoidal gauge potential, only dark (bright) solitary wave solutions exist in the system with repulsive (attractive) atomic interaction; however, in the presence of the helicoidal gauge potential, both dark and bright solitary waves can exist in the system regardless of whether the atomic interaction is repulsive or attractive. In addition, we investigate the stability of solitary waves and obtain the stability regions of different types of solitary waves by applying the linear stability analysis. The dynamic evolution results of the solitary waves by the direct numerical simulation not only validate the linear stability analysis but also confirm the analytical prediction of the solitary waves. Finally, the collision effects between solitary waves are also presented by the numerical simulation. It is shown that the interactions between solitary waves in the system have both elastic and inelastic collisions, which are closely related to the position of solitary wave states in the linear energy band. Our results provide a potential way to adjust the types of solitary waves in BECs with helicoidal gauge potential.
Collapse
Affiliation(s)
- Xiao-Xun Li
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rui-Jin Cheng
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ji-Li Ma
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ai-Xia Zhang
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ju-Kui Xue
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
4
|
Otlaadisa P, Tabi CB, Kofané TC. Modulation instability in helicoidal spin-orbit coupled open Bose-Einstein condensates. Phys Rev E 2021; 103:052206. [PMID: 34134292 DOI: 10.1103/physreve.103.052206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We introduce a vector form of the cubic complex Ginzburg-Landau equation describing the dynamics of dissipative solitons in the two-component helicoidal spin-orbit coupled open Bose-Einstein condensates (BECs), where the addition of dissipative interactions is done through coupled rate equations. Furthermore, the standard linear stability analysis is used to investigate theoretically the stability of continuous-wave (cw) solutions and to obtain an expression for the modulational instability gain spectrum. Using direct simulations of the Fourier space, we numerically investigate the dynamics of the modulational instability in the presence of helicoidal spin-orbit coupling. Our numerical simulations confirm the theoretical predictions of the linear theory as well as the threshold for amplitude perturbations.
Collapse
Affiliation(s)
- Phelo Otlaadisa
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
| | - Conrad Bertrand Tabi
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
| | - Timoléon Crépin Kofané
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
- Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
- Centre d'Excellence Africain en Technologies de l'Information et de la Communication, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
5
|
Vanderhaegen G, Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Mussot A, Onorato M, Trillo S, Chabchoub A, Akhmediev N. "Extraordinary" modulation instability in optics and hydrodynamics. Proc Natl Acad Sci U S A 2021; 118:e2019348118. [PMID: 33790009 PMCID: PMC8040794 DOI: 10.1073/pnas.2019348118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The classical theory of modulation instability (MI) attributed to Bespalov-Talanov in optics and Benjamin-Feir for water waves is just a linear approximation of nonlinear effects and has limitations that have been corrected using the exact weakly nonlinear theory of wave propagation. We report results of experiments in both optics and hydrodynamics, which are in excellent agreement with nonlinear theory. These observations clearly demonstrate that MI has a wider band of unstable frequencies than predicted by the linear stability analysis. The range of areas where the nonlinear theory of MI can be applied is actually much larger than considered here.
Collapse
Affiliation(s)
- Guillaume Vanderhaegen
- University of Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France;
| | - Corentin Naveau
- University of Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Pascal Szriftgiser
- University of Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Alexandre Kudlinski
- University of Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Matteo Conforti
- University of Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Arnaud Mussot
- University of Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
- Institut Universitaire de France, F-75005 Paris, France
| | - Miguel Onorato
- Dipartimento di Fisica, Università degli Studi di Torino, 10125 Torino, Italy
| | - Stefano Trillo
- Department of Engineering, University of Ferrara, 44122 Ferrara, Italy
| | - Amin Chabchoub
- Centre for Wind, Waves and Water, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Disaster Prevention Research Institute, Kyoto University, Kyoto 611-0011, Japan
| | - Nail Akhmediev
- Department of Theoretical Physics, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
6
|
Bhat IA, Sivaprakasam S, Malomed BA. Modulational instability and soliton generation in chiral Bose-Einstein condensates with zero-energy nonlinearity. Phys Rev E 2021; 103:032206. [PMID: 33862781 DOI: 10.1103/physreve.103.032206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/17/2021] [Indexed: 11/07/2022]
Abstract
By means of analytical and numerical methods, we address the modulational instability (MI) in chiral condensates governed by the Gross-Pitaevskii equation including the current nonlinearity. The analysis shows that this nonlinearity partly suppresses the MI driven by the cubic self-focusing, although the current nonlinearity is not represented in the system's energy (although it modifies the momentum), hence it may be considered as zero-energy nonlinearity. Direct simulations demonstrate generation of trains of stochastically interacting chiral solitons by MI. In the ring-shaped setup, the MI creates a single traveling solitary wave. The sign of the current nonlinearity determines the direction of propagation of the emerging solitons.
Collapse
Affiliation(s)
- Ishfaq Ahmad Bhat
- Department of Physics, Pondicherry University, Pondicherry 605014, India
| | - S Sivaprakasam
- Department of Physics, Pondicherry University, Pondicherry 605014, India
| | - Boris A Malomed
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel.,Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
| |
Collapse
|