1
|
Taranto P, Lipka-Bartosik P, Rodríguez-Briones NA, Perarnau-Llobet M, Friis N, Huber M, Bakhshinezhad P. Efficiently Cooling Quantum Systems with Finite Resources: Insights from Thermodynamic Geometry. PHYSICAL REVIEW LETTERS 2025; 134:070401. [PMID: 40053940 DOI: 10.1103/physrevlett.134.070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/16/2024] [Indexed: 03/09/2025]
Abstract
Landauer's limit on heat dissipation during information erasure is critical as devices shrink, requiring optimal pure-state preparation to minimize errors. However, Nernst's third law states this demands infinite resources in energy, time, or control complexity. We address the challenge of cooling quantum systems with finite resources. Using Markovian collision models, we explore resource trade-offs and present efficient cooling protocols (that are optimal for qubits) for coherent and incoherent control. Leveraging thermodynamic length, we derive bounds on heat dissipation for swap-based strategies and discuss the limitations of preparing pure states efficiently.
Collapse
Affiliation(s)
- Philip Taranto
- University of Manchester, Department of Physics and Astronomy, Manchester M13 9PL, United Kingdom
- The University of Tokyo, Department of Physics, Graduate School of Science, 7-3-1 Hongo, Bunkyo City, Tokyo 113-0033, Japan
| | - Patryk Lipka-Bartosik
- University of Geneva, Department of Applied Physics, 1211 Geneva, Switzerland
- Jagiellonian University, Institute of Theoretical Physics, Faculty of Physics, Astronomy and Applied Computer Science, 30-348 Kraków, Poland
| | - Nayeli A Rodríguez-Briones
- Technische Universität Wien, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
- University of California, Miller Institute for Basic Research in Science, Berkeley, California 94720, USA
| | - Martí Perarnau-Llobet
- University of Geneva, Department of Applied Physics, 1211 Geneva, Switzerland
- Universitat Autònoma de Barcelona, Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, 08193 Bellatera (Barcelona), Spain
| | - Nicolai Friis
- Technische Universität Wien, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information-IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - Marcus Huber
- Technische Universität Wien, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information-IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | | |
Collapse
|
2
|
Biswas T, Łobejko M, Mazurek P, Horodecki M. Catalytic enhancement in the performance of the microscopic two-stroke heat engine. Phys Rev E 2024; 110:044120. [PMID: 39562955 DOI: 10.1103/physreve.110.044120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/16/2024] [Indexed: 11/21/2024]
Abstract
We consider a model of heat engine operating in the microscopic regime: the two-stroke engine. It produces work and exchanges heat in two discrete strokes that are separated in time. The working body of the engine consists of two d-level systems initialized in thermal states at two distinct temperatures. Additionally, an auxiliary nonequilibrium system called catalyst may be incorporated with the working body of the engine, provided the state of the catalyst remains unchanged after the completion of a thermodynamic cycle. This ensures that the work produced by the engine arises solely from the temperature difference. Upon establishing the rigorous thermodynamic framework, we characterize twofold improvement stemming from the inclusion of a catalyst. Firstly, we prove that in the noncatalytic scenario, the optimal efficiency of the two-stroke heat engine with a working body composed of two-level systems is given by the Otto efficiency, which can be surpassed by incorporating a catalyst with the working body. Secondly, we show that incorporating a catalyst allows the engine to operate in frequency and temperature regimes that are not accessible for noncatalytic two-stroke engines. We conclude with a general conjecture about the advantage brought by a catalyst: including the catalyst with the working body always allows to improve efficiency over the noncatalytic scenario for any microscopic two-stroke heat engines. We prove this conjecture for two-stroke engines where the working body is composed of two d-level systems initialized in thermal states at two distinct temperatures, as long as the final joint state leading to optimal efficiency in the noncatalytic scenario is not a product state, or at least one of the d-level system is not thermal.
Collapse
Affiliation(s)
| | - Marcin Łobejko
- International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Paweł Mazurek
- International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | |
Collapse
|
3
|
Łobejko M, Biswas T, Mazurek P, Horodecki M. Catalytic Advantage in Otto-like Two-Stroke Quantum Engines. PHYSICAL REVIEW LETTERS 2024; 132:260403. [PMID: 38996292 DOI: 10.1103/physrevlett.132.260403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 07/14/2024]
Abstract
We demonstrate how to incorporate a catalyst to enhance the performance of a heat engine. Specifically, we analyze efficiency in one of the simplest engine models, which operates in only two strokes and comprises of a pair of two-level systems, potentially assisted by a d-dimensional catalyst. When no catalysis is present, the efficiency of the machine is given by the Otto efficiency. Introducing the catalyst allows for constructing a protocol which overcomes this bound, while new efficiency can be expressed in a simple form as a generalization of Otto's formula: 1-(1/d)(ω_{c}/ω_{h}). The catalyst also provides a bigger operational range of parameters in which the machine works as an engine. Although an increase in engine efficiency is mostly accompanied by a decrease in work production (approaching zero as the system approaches Carnot efficiency), it can lead to a more favorable trade-off between work and efficiency. The provided example introduces new possibilities for enhancing performance of thermal machines through finite-dimensional ancillary systems.
Collapse
Affiliation(s)
- Marcin Łobejko
- Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
- International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | | - Paweł Mazurek
- International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | |
Collapse
|
4
|
Leitch H, Hammam K, De Chiara G. Thermodynamics of hybrid quantum rotor devices. Phys Rev E 2024; 109:024108. [PMID: 38491686 DOI: 10.1103/physreve.109.024108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/19/2024] [Indexed: 03/18/2024]
Abstract
We investigate the thermodynamics of a hybrid quantum device consisting of two qubits collectively interacting with a quantum rotor and coupled dissipatively to two equilibrium reservoirs at different temperatures. By modeling the dynamics and the resulting steady state of the system using a collision model, we identify the functioning of the device as a thermal engine, a refrigerator, or an accelerator. In addition, we also look into the device's capacity to operate as a heat rectifier and optimize both the rectification coefficient and the heat flow simultaneously. Drawing an analogy to heat rectification and since we are interested in the conversion of energy into the rotor's kinetic energy, we introduce the concept of angular momentum rectification, which may be employed to control work extraction through an external load.
Collapse
Affiliation(s)
- Heather Leitch
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Kenza Hammam
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Gabriele De Chiara
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
5
|
Bakhshinezhad P, Jablonski BR, Binder FC, Friis N. Trade-offs between precision and fluctuations in charging finite-dimensional quantum batteries. Phys Rev E 2024; 109:014131. [PMID: 38366482 DOI: 10.1103/physreve.109.014131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Within quantum thermodynamics, many tasks are modeled by processes that require work sources represented by out-of-equilibrium quantum systems, often dubbed quantum batteries, in which work can be deposited or from which work can be extracted. Here we consider quantum batteries modeled as finite-dimensional quantum systems initially in thermal equilibrium that are charged via cyclic Hamiltonian processes. We present optimal or near-optimal protocols for N identical two-level systems and individual d-level systems with equally spaced energy gaps in terms of the charging precision and work fluctuations during the charging process. We analyze the trade-off between these figures of merit as well as the performance of local and global operations.
Collapse
Affiliation(s)
- Pharnam Bakhshinezhad
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
- Department of Physics and Nanolund, Lund University, Box 118, 221 00 Lund, Sweden
- Institute for Quantum Optics and Quantum Information-IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - Beniamin R Jablonski
- Institute for Quantum Optics and Quantum Information-IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - Felix C Binder
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Nicolai Friis
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information-IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| |
Collapse
|
6
|
Xuereb J, Erker P, Meier F, Mitchison MT, Huber M. Impact of Imperfect Timekeeping on Quantum Control. PHYSICAL REVIEW LETTERS 2023; 131:160204. [PMID: 37925703 DOI: 10.1103/physrevlett.131.160204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
In order to unitarily evolve a quantum system, an agent requires knowledge of time, a parameter that no physical clock can ever perfectly characterize. In this Letter, we study how limitations on acquiring knowledge of time impact controlled quantum operations in different paradigms. We show that the quality of timekeeping an agent has access to limits the circuit complexity they are able to achieve within circuit-based quantum computation. We do this by deriving an upper bound on the average gate fidelity achievable under imperfect timekeeping for a general class of random circuits. Another area where quantum control is relevant is quantum thermodynamics. In that context, we show that cooling a qubit can be achieved using a timer of arbitrary quality for control: timekeeping error only impacts the rate of cooling and not the achievable temperature. Our analysis combines techniques from the study of autonomous quantum clocks and the theory of quantum channels to understand the effect of imperfect timekeeping on controlled quantum dynamics.
Collapse
Affiliation(s)
- Jake Xuereb
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
| | - Paul Erker
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - Florian Meier
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
| | - Mark T Mitchison
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, D02YN67, Ireland
| | - Marcus Huber
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| |
Collapse
|
7
|
Abiuso P, Miller HJD, Perarnau-Llobet M, Scandi M. Geometric Optimisation of Quantum Thermodynamic Processes. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1076. [PMID: 33286845 PMCID: PMC7597153 DOI: 10.3390/e22101076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/22/2022]
Abstract
Differential geometry offers a powerful framework for optimising and characterising finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical introduction to the notion of thermodynamic length. We review and connect different frameworks where it emerges in the quantum regime: adiabatically driven closed systems, time-dependent Lindblad master equations, and discrete processes. A geometric lower bound on entropy production in finite-time is then presented, which represents a quantum generalisation of the original classical bound. Following this, we review and develop some general principles for the optimisation of thermodynamic processes in the linear-response regime. These include constant speed of control variation according to the thermodynamic metric, absence of quantum coherence, and optimality of small cycles around the point of maximal ratio between heat capacity and relaxation time for Carnot engines.
Collapse
Affiliation(s)
- Paolo Abiuso
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; (P.A.); (M.S.)
| | - Harry J. D. Miller
- Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | | | - Matteo Scandi
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; (P.A.); (M.S.)
| |
Collapse
|
8
|
Clivaz F, Silva R, Haack G, Brask JB, Brunner N, Huber M. Unifying Paradigms of Quantum Refrigeration: A Universal and Attainable Bound on Cooling. PHYSICAL REVIEW LETTERS 2019; 123:170605. [PMID: 31702237 DOI: 10.1103/physrevlett.123.170605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Cooling quantum systems is arguably one of the most important thermodynamic tasks connected to modern quantum technologies and an interesting question from a foundational perspective. It is thus of no surprise that many different theoretical cooling schemes have been proposed, differing in the assumed control paradigm and complexity, and operating either in a single cycle or in steady state limits. Working out bounds on quantum cooling has since been a highly context dependent task with multiple answers, with no general result that holds independent of assumptions. In this Letter we derive a universal bound for cooling quantum systems in the limit of infinite cycles (or steady state regimes) that is valid for any control paradigm and machine size. The bound only depends on a single parameter of the refrigerator and is theoretically attainable in all control paradigms. For qubit targets we prove that this bound is achievable in a single cycle and by autonomous machines.
Collapse
Affiliation(s)
- Fabien Clivaz
- Department of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria
| | - Ralph Silva
- Department of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
- Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Géraldine Haack
- Department of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jonatan Bohr Brask
- Department of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
- Department of Physics, Technical University of Denmark, Fysikvej, Kongens Lyngby 2800, Denmark
| | - Nicolas Brunner
- Department of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
| | - Marcus Huber
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria
| |
Collapse
|