1
|
Carretas-Talamante AG, Zepeda-López JB, Lázaro-Lázaro E, Elizondo-Aguilera LF, Medina-Noyola M. Non-equilibrium view of the amorphous solidification of liquids with competing interactions. J Chem Phys 2023; 158:064506. [PMID: 36792503 DOI: 10.1063/5.0132525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The interplay between short-range attractions and long-range repulsions (SALR) characterizes the so-called liquids with competing interactions, which are known to exhibit a variety of equilibrium and non-equilibrium phases. The theoretical description of the phenomenology associated with glassy or gel states in these systems has to take into account both the presence of thermodynamic instabilities (such as those defining the spinodal line and the so called λ line) and the limited capability to describe genuine non-equilibrium processes from first principles. Here, we report the first application of the non-equilibrium self-consistent generalized Langevin equation theory to the description of the dynamical arrest processes that occur in SALR systems after being instantaneously quenched into a state point in the regions of thermodynamic instability. The physical scenario predicted by this theory reveals an amazing interplay between the thermodynamically driven instabilities, favoring equilibrium macro- and micro-phase separation, and the kinetic arrest mechanisms, favoring non-equilibrium amorphous solidification of the liquid into an unexpected variety of glass and gel states.
Collapse
Affiliation(s)
- Ana Gabriela Carretas-Talamante
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - Jesús Benigno Zepeda-López
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - Edilio Lázaro-Lázaro
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | | | - Magdaleno Medina-Noyola
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| |
Collapse
|
2
|
Hansen J, Moll CJ, López Flores L, Castañeda-Priego R, Medina-Noyola M, Egelhaaf SU, Platten F. Phase separation and dynamical arrest of protein solutions dominated by short-range attractions. J Chem Phys 2023; 158:024904. [PMID: 36641409 DOI: 10.1063/5.0128643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The interplay of liquid-liquid phase separation (LLPS) and dynamical arrest can lead to the formation of gels and glasses, which is relevant for such diverse fields as condensed matter physics, materials science, food engineering, and the pharmaceutical industry. In this context, protein solutions exhibit remarkable equilibrium and non-equilibrium behaviors. In the regime where attractive and repulsive forces compete, it has been demonstrated, for example, that the location of the dynamical arrest line seems to be independent of ionic strength, so that the arrest lines at different ionic screening lengths overlap, in contrast to the LLPS coexistence curves, which strongly depend on the salt concentration. In this work, we show that the same phenomenology can also be observed when the electrostatic repulsions are largely screened, and the range and strength of the attractions are varied. In particular, using lysozyme in brine as a model system, the metastable gas-liquid binodal and the dynamical arrest line as well as the second virial coefficient have been determined for various solution conditions by cloud-point measurements, optical microscopy, centrifugation experiments, and light scattering. With the aim of understanding this new experimental phenomenology, we apply the non-equilibrium self-consistent generalized Langevin equation theory to a simple model system with only excluded volume plus short-range attractions, to study the dependence of the predicted arrest lines on the range of the attractive interaction. The theoretical predictions find a good qualitative agreement with experiments when the range of the attraction is not too small compared with the size of the protein.
Collapse
Affiliation(s)
- Jan Hansen
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| | - Carolyn J Moll
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| | - Leticia López Flores
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | | | - Magdaleno Medina-Noyola
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| | - Florian Platten
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
3
|
Mendoza-Méndez P, Peredo-Ortiz R, Lázaro-Lázaro E, Chávez-Paez M, Ruiz-Estrada H, Pacheco-Vázquez F, Medina-Noyola M, Elizondo-Aguilera LF. Structural relaxation, dynamical arrest, and aging in soft-sphere liquids. J Chem Phys 2022; 157:244504. [PMID: 36586975 DOI: 10.1063/5.0121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigate the structural relaxation of a soft-sphere liquid quenched isochorically (ϕ = 0.7) and instantaneously to different temperatures Tf above and below the glass transition. For this, we combine extensive Brownian dynamics simulations and theoretical calculations based on the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory. The response of the liquid to a quench generally consists of a sub-linear increase of the α-relaxation time with system's age. Approaching the ideal glass-transition temperature from above (Tf > Ta), sub-aging appears as a transient process describing a broad equilibration crossover for quenches to nearly arrested states. This allows us to empirically determine an equilibration timescale teq(Tf) that becomes increasingly longer as Tf approaches Ta. For quenches inside the glass (Tf ≤ Ta), the growth rate of the structural relaxation time becomes progressively larger as Tf decreases and, unlike the equilibration scenario, τα remains evolving within the whole observation time-window. These features are consistently found in theory and simulations with remarkable semi-quantitative agreement and coincide with those revealed in a previous and complementary study [P. Mendoza-Méndez et al., Phys. Rev. 96, 022608 (2017)] that considered a sequence of quenches with fixed final temperature Tf = 0 but increasing ϕ toward the hard-sphere dynamical arrest volume fraction ϕHS a=0.582. The NE-SCGLE analysis, however, unveils various fundamental aspects of the glass transition, involving the abrupt passage from the ordinary equilibration scenario to the persistent aging effects that are characteristic of glass-forming liquids. The theory also explains that, within the time window of any experimental observation, this can only be observed as a continuous crossover.
Collapse
Affiliation(s)
- P Mendoza-Méndez
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 1152, CP 72570 Puebla, Mexico
| | - R Peredo-Ortiz
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 1152, CP 72570 Puebla, Mexico
| | - E Lázaro-Lázaro
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 1152, CP 72570 Puebla, Mexico
| | - M Chávez-Paez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - H Ruiz-Estrada
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 1152, CP 72570 Puebla, Mexico
| | - F Pacheco-Vázquez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla, Mexico
| | - M Medina-Noyola
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - L F Elizondo-Aguilera
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla, Mexico
| |
Collapse
|
4
|
Elizondo-Aguilera LF, Rizzo T, Voigtmann T. From Subaging to Hyperaging in Structural Glasses. PHYSICAL REVIEW LETTERS 2022; 129:238003. [PMID: 36563193 DOI: 10.1103/physrevlett.129.238003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate nonequilibrium scaling laws for the aging and equilibration dynamics in glass formers that emerge from combining a relaxation equation for the static structure with the equilibrium scaling laws of glassy dynamics. Different scaling regimes are predicted for the evolution of the structural relaxation time τ with age (waiting time t_{w}), depending on the depth of the quench from the liquid into the glass: "simple" aging (τ∼t_{w}) applies for quenches close to the critical point of mode-coupling theory (MCT) and implies "subaging" (τ≈t_{w}^{δ} with δ<1) as a broad equilibration crossover for quenches to nearly arrested equilibrium states; "hyperaging" (or superaging, τ∼t_{w}^{δ^{'}} with δ^{'}>1) emerges for quenches deep into the glass. The latter is cut off by non-mean-field fluctuations that we account for within a recent extension of MCT, the stochastic β-relaxation theory (SBR). We exemplify the scaling laws with a schematic model that quantitatively fits simulation data.
Collapse
Affiliation(s)
- Luis F Elizondo-Aguilera
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72520 Puebla, México
| | - Tommaso Rizzo
- Dipartimento di Fisica, Università di Roma I "La Sapienza," Piazzale A. Moro 2, I-00185 Rome, Italy
- ISC-CNR, UOS Roma, Università di Roma I "La Sapienza," Piazzale A. Moro 2, I-00185 Rome, Italy
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), Linder Höhe, 51170 Köln, Germany
- Department of Physics, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Peredo-Ortiz R, Medina Noyola M, Voigtmann T, Elizondo-Aguilera LF. "Inner clocks" of glass-forming liquids. J Chem Phys 2022; 156:244506. [DOI: 10.1063/5.0087649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Providing a physically sound explanation of aging phenomena in non-equilibrium amorphous materialsis a challenging problem in modern statistical thermodynamics. The slow evolution of physical propertiesafter quenches of control parameters is empirically well interpreted via the concept of material time (orinternal clock), based on the Tool-Narayanaswamy-Moynihan (TNM) model. Yet, the fundamental reasonsof its striking success remain unclear. We propose a microscopic rationale behind the material time onthe basis of the linear laws of irreversible thermodynamics and its extension that treats the correspondingkinetic coefficients as state functions of a slowly evolving material state. Our interpretation is based onthe recognition that the same mathematical structure governs both the Tool model and the recently devel-oped non-equilibrium extension of the self-consistent generalized Langevin equation theory (NE-SCGLE),guided by the universal principles of Onsager's theory of irreversible processes. This identification opensthe way for a generalization of the material-time concept to aging systems where several relaxation modeswith very different equilibration processes must be considered, and partially frozen glasses manifest theappearance of partial ergodicity breaking, and hence materials with multiple very distinct inner clocks.
Collapse
Affiliation(s)
| | | | - Thomas Voigtmann
- German Aerospace Centre DLR Institute of Materials Physics in Space, Germany
| | | |
Collapse
|
6
|
Mokshin AV, Fairushin II, Tkachenko IM. Self-consistent relaxation theory of collective ion dynamics in Yukawa one-component plasmas under intermediate screening regimes. Phys Rev E 2022; 105:025204. [PMID: 35291083 DOI: 10.1103/physreve.105.025204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The self-consistent relaxation theory is employed to describe the collective ion dynamics in strongly coupled Yukawa classical one-component plasmas. The theory is applied to equilibrium states corresponding to intermediate screening regimes with appropriate values of the structure and coupling parameters. The information about the structure (the radial distribution function and the static structure factor) and the thermodynamics of the system are sufficient to describe collective dynamics over a wide range of spatial scales, namely, from the extended hydrodynamic to the microscopic dynamics scale. The main experimentally measurable characteristics of the equilibrium collective dynamics of ions-the spectrum of the dynamic structure factor, the dispersion parameters, the speed of sound, and the sound attenuation-are determined within the framework of the theory without using any adjustable parameters. The results demonstrate agreement with molecular dynamics simulations. Thus a direct realization is presented of the key idea of statistical mechanics: for the theoretical description of the collective particle dynamics in equilibrium fluids it is sufficient to know the interparticle interaction potential and the structural characteristics. Comparison with alternative or complementary theoretical approaches is provided.
Collapse
Affiliation(s)
- Anatolii V Mokshin
- Department of Computational Physics, Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Ilnaz I Fairushin
- Department of Computational Physics, Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Igor M Tkachenko
- Departament de Matemàtica Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Al-Farabi Kazakh National University, al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| |
Collapse
|
7
|
Peredo-Ortiz R, Zubieta Rico PF, Cortés-Morales EC, Pérez-Ángel GG, Voigtmann T, Medina-Noyola M, Elizondo-Aguilera LF. Non-equilibrium relaxation and aging in the dynamics of a dipolar fluid quenched towards the glass transition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:084003. [PMID: 34798621 DOI: 10.1088/1361-648x/ac3b75] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The recently developed non-equilibrium self-consistent generalized Langevin equation theory of the dynamics of liquids of non-spherically interacting particles [2016J. Phys. Chem. B1207975] is applied to the description of the irreversible relaxation of a thermally and mechanically quenched dipolar fluid. Specifically, we consider a dipolar hard-sphere liquid quenched (attw= 0) from full equilibrium conditions towards different ergodic-non-ergodic transitions. Qualitatively different scenarios are predicted by the theory for the time evolution of the system after the quench (tw> 0), that depend on both the kind of transition approached and the specific features of the protocol of preparation. Each of these scenarios is characterized by the kinetics displayed by a set of structural correlations, and also by the development of two characteristic times describing the relaxation of the translational and rotational dynamics, allowing us to highlight the crossover from equilibration to aging in the system and leading to the prediction of different underlying mechanisms and relaxation laws for the dynamics at each of the glass transitions explored.
Collapse
Affiliation(s)
- Ricardo Peredo-Ortiz
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, San Luis Potosí, Mexico
| | - Pablo F Zubieta Rico
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, San Luis Potosí, Mexico
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States of America
| | - Ernesto C Cortés-Morales
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, San Luis Potosí, Mexico
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States of America
| | - Gabriel G Pérez-Ángel
- Departamento de Física Aplicada, CINVESTAV del IPN, A. P. 73 'Cordemex', 97310 Mérida, Yucatán, Mexico
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), Linder Höhe 51170 Köln, Germany
- Department of Physics, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Magdaleno Medina-Noyola
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, San Luis Potosí, Mexico
| | - Luis F Elizondo-Aguilera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, San Luis Potosí, Mexico
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), Linder Höhe 51170 Köln, Germany
| |
Collapse
|
8
|
Debets VE, Luo C, Ciarella S, Janssen LMC. Generalized mode-coupling theory for mixtures of Brownian particles. Phys Rev E 2021; 104:065302. [PMID: 35030832 DOI: 10.1103/physreve.104.065302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 11/07/2022]
Abstract
Generalized mode-coupling theory (GMCT) has recently emerged as a promising first-principles theory to study the poorly understood dynamics of glass-forming materials. Formulated as a hierarchical extension of standard mode-coupling theory (MCT), it is able to systematically improve its predictions by including the exact dynamics of higher-order correlation functions into its hierarchy. However, in contrast to Newtonian dynamics, a fully generalized version of the theory based on Brownian dynamics is still lacking. To close this gap, we provide a detailed derivation of GMCT for colloidal mixtures obeying a many-body Smoluchowski equation. We demonstrate that a hierarchy of coupled equations can again be established and show that these, consistent with standard MCT, are identical to the ones obtained from Newtonian GMCT when taking the overdamped limit. Consequently, the nontrivial similarity between Brownian and Newtonian MCT is maintained for our multicomponent GMCT. As a proof of principle, we also solve the generalized mode-coupling equations for the binary Kob-Andersen Lennard-Jones mixture undergoing Brownian dynamics and confirm the improved predictive power of the theory upon using more levels of the GMCT hierarchy of equations.
Collapse
Affiliation(s)
- Vincent E Debets
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Chengjie Luo
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Simone Ciarella
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Liesbeth M C Janssen
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
9
|
Lira-Escobedo J, Mendoza-Méndez P, Medina-Noyola M, McKenna GB, Ramírez-González PE. On a fundamental description of the Kovacs' kinetic signatures in glass-forming systems. J Chem Phys 2021; 155:014503. [PMID: 34241391 DOI: 10.1063/5.0054520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The time-evolution equation for the time-dependent static structure factor of the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory was used to investigate the kinetics of glass-forming systems under isochoric conditions. The kinetics are studied within the framework of the fictive temperature (TF) of the glassy structure. We solve for the kinetics of TF(t) and the time-dependent structure factor and find that they are different but closely related by a function that depends only on temperature. Furthermore, we are able to solve for the evolution of TF(t) in a set of temperature-jump histories referred to as the Kovacs' signatures. We demonstrate that the NE-SCGLE theory reproduces all the Kovacs' signatures, namely, intrinsic isotherm, asymmetry of approach, and memory effect. In addition, we extend the theory into largely unexplored, deep glassy state, regions that are below the notionally "ideal" glass temperature.
Collapse
Affiliation(s)
- J Lira-Escobedo
- Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - P Mendoza-Méndez
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, 72570 Puebla, Mexico
| | - M Medina-Noyola
- Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - G B McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - P E Ramírez-González
- CONACYT-Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| |
Collapse
|
10
|
Zepeda-López JB, Medina-Noyola M. Waiting-time dependent non-equilibrium phase diagram of simple glass- and gel-forming liquids. J Chem Phys 2021; 154:174901. [PMID: 34241066 DOI: 10.1063/5.0039524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Under numerous circumstances, many soft and hard materials are present in a puzzling wealth of non-equilibrium amorphous states, whose properties are not stationary and depend on preparation. They are often summarized in unconventional "phase diagrams" that exhibit new "phases" and/or "transitions" in which time, however, is an essential variable. This work proposes a solution to the problem of theoretically defining and predicting these non-equilibrium phases and their time-evolving phase diagrams, given the underlying molecular interactions. We demonstrate that these non-equilibrium phases and the corresponding non-stationary (i.e., aging) phase diagrams can indeed be defined and predicted using the kinetic perspective of a novel non-equilibrium statistical mechanical theory of irreversible processes. This is illustrated with the theoretical description of the transient process of dynamic arrest into non-equilibrium amorphous solid phases of an instantaneously quenched simple model fluid involving repulsive hard-sphere plus attractive square well pair interactions.
Collapse
Affiliation(s)
- Jesús Benigno Zepeda-López
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, SLP, Mexico
| | - Magdaleno Medina-Noyola
- Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, SLP, Mexico
| |
Collapse
|
11
|
Ikeda H, Miyazaki K, Yoshino H, Ikeda A. Multiple glass transitions and higher-order replica symmetry breaking of binary mixtures. Phys Rev E 2021; 103:022613. [PMID: 33736072 DOI: 10.1103/physreve.103.022613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/04/2021] [Indexed: 11/07/2022]
Abstract
We extend the replica liquid theory in order to describe the multiple glass transitions of binary mixtures with large size disparities, by taking into account the two-step replica symmetry breaking (2RSB). We determine the glass phase diagram of the mixture of large and small particles in the large-dimension limit where the mean-field theory becomes exact. When the size ratio of particles is beyond a critical value, the theory predicts three distinct glass phases; (i) the one-step replica symmetery breaking (1RSB) double glass where both components vitrify simultaneously, (ii) the 1RSB single glass where only large particles are frozen while small particles remain mobile, and (iii) a glass phase called the 2RSB double glass where both components vitrify simultaneously but with an energy landscape topography distinct from the 1RSB double glass.
Collapse
Affiliation(s)
- Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan
| | | | - Hajime Yoshino
- Cybermedia Center, Osaka University, Toyonaka, Osaka 560-0043, Japan.,Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Atushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan
| |
Collapse
|
12
|
Ruscher C, Ciarella S, Luo C, Janssen LMC, Farago J, Baschnagel J. Glassy dynamics of a binary Voronoi fluid: a mode-coupling analysis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:064001. [PMID: 33105111 DOI: 10.1088/1361-648x/abc4cc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The binary Voronoi mixture is a fluid model whose interactions are derived from the Voronoi-Laguerre tessellation of the configurations of the system. The resulting interactions are local and many-body. Here we perform molecular-dynamics (MD) simulations of an equimolar mixture that is weakly polydisperse and additive. For the first time we study the structural relaxation of this mixture in the supercooled-liquid regime. From the simulations we determine the time- and temperature-dependent coherent and incoherent scattering functions for a large range of wave vectors, as well as the mean-square displacements of both particle species. We perform a detailed analysis of the dynamics by comparing the MD results with the first-principles-based idealized mode-coupling theory (MCT). To this end, we employ two approaches: fits to the asymptotic predictions of the theory, and fit-parameter-free binary MCT calculations based on static-structure-factor input from the simulations. We find that many-body interactions of the Voronoi mixture do not lead to strong qualitative differences relative to similar analyses carried out for simple liquids with pair-wise interactions. For instance, the fits give an exponent parameter λ ≈ 0.746 comparable to typical values found for simple liquids, the wavevector dependence of the Kohlrausch relaxation time is in good qualitative agreement with literature results for polydisperse hard spheres, and the MCT calculations based on static input overestimate the critical temperature, albeit only by a factor of about 1.2. This overestimation appears to be weak relative to other well-studied supercooled-liquid models such as the binary Kob-Andersen Lennard-Jones mixture. Overall, the agreement between MCT and simulation suggests that it is possible to predict several microscopic dynamic properties with qualitative, and in some cases near-quantitative, accuracy based solely on static two-point structural correlations, even though the system itself is inherently governed by many-body interactions.
Collapse
Affiliation(s)
- C Ruscher
- Université de Strasbourg, Institut Charles Sadron, CNRS-UPR22, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
- Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | - S Ciarella
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| | - C Luo
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| | - L M C Janssen
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| | - J Farago
- Université de Strasbourg, Institut Charles Sadron, CNRS-UPR22, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - J Baschnagel
- Université de Strasbourg, Institut Charles Sadron, CNRS-UPR22, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
13
|
Lucco Castello F, Tolias P. Theoretical Estimate of the Glass Transition Line of Yukawa One-Component Plasmas. Molecules 2021; 26:molecules26030669. [PMID: 33525346 PMCID: PMC7865523 DOI: 10.3390/molecules26030669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/04/2022] Open
Abstract
The mode coupling theory of supercooled liquids is combined with advanced closures to the integral equation theory of liquids in order to estimate the glass transition line of Yukawa one-component plasmas from the unscreened Coulomb limit up to the strong screening regime. The present predictions constitute a major improvement over the current literature predictions. The calculations confirm the validity of an existing analytical parameterization of the glass transition line. It is verified that the glass transition line is an approximate isomorphic curve and the value of the corresponding reduced excess entropy is estimated. Capitalizing on the isomorphic nature of the glass transition line, two structural vitrification indicators are identified that allow a rough estimate of the glass transition point only through simple curve metrics of the static properties of supercooled liquids. The vitrification indicators are demonstrated to be quasi-universal by an investigation of hard sphere and inverse power law supercooled liquids. The straightforward extension of the present results to bi-Yukawa systems is also discussed.
Collapse
|
14
|
Luo C, Janssen LMC. Generalized mode-coupling theory of the glass transition. II. Analytical scaling laws. J Chem Phys 2020; 153:214506. [PMID: 33291926 DOI: 10.1063/5.0026979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Generalized mode-coupling theory (GMCT) constitutes a systematically correctable, first-principles theory to study the dynamics of supercooled liquids and the glass transition. It is a hierarchical framework that, through the incorporation of increasingly many particle density correlations, can remedy some of the inherent limitations of the ideal mode-coupling theory (MCT). However, despite MCT's limitations, the ideal theory also enjoys several remarkable successes, notably including the analytical scaling laws for the α- and β-relaxation dynamics. Here, we mathematically derive similar scaling laws for arbitrary-order multi-point density correlation functions obtained from GMCT under arbitrary mean-field closure levels. More specifically, we analytically derive the asymptotic and preasymptotic solutions for the long-time limits of multi-point density correlators, the critical dynamics with two power-law decays, the factorization scaling laws in the β-relaxation regime, and the time-density superposition principle in the α-relaxation regime. The two characteristic power-law-divergent relaxation times for the two-step decay and the non-trivial relation between their exponents are also obtained. The validity ranges of the leading-order scaling laws are also provided by considering the leading preasymptotic corrections. Furthermore, we test these solutions for the Percus-Yevick hard-sphere system. We demonstrate that GMCT preserves all the celebrated scaling laws of MCT while quantitatively improving the exponents, rendering the theory a promising candidate for an ultimately quantitative first-principles theory of glassy dynamics.
Collapse
Affiliation(s)
- Chengjie Luo
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Liesbeth M C Janssen
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
15
|
Elizondo-Aguilera LF, Cortés-Morales EC, Zubieta-Rico PF, Medina-Noyola M, Castañeda-Priego R, Voigtmann T, Pérez-Ángel G. Spherical harmonic projections of the static structure factor of the dipolar hard sphere model: Theory vs simulations. J Chem Phys 2020; 152:204501. [PMID: 32486667 DOI: 10.1063/5.0004200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We investigate the static correlations of a dipolar fluid in terms of the irreducible coefficients of the spherical harmonic expansion of the static structure factor. To this end, we develop a theoretical framework based on a soft-core version of Wertheim's solution of the mean spherical approximation (MSA), which renders the analytical determination of such coefficients possible. The accuracy of this approximation is tested by a comparison against the results obtained with the assistance of extensive molecular dynamics simulations at different regimes of concentration and temperature. Crucial aspects for the comparison of the results provided by the two methods are carefully discussed, concerning the different reference frames used in theory and simulations to describe rotations and orientations, and leading to important differences in the behavior of correlation functions with the same combination of spherical harmonic indices. We find a remarkable agreement between the two approaches in the fluid regime, thus providing a first stringent comparison of the irreducible coefficients of the spherical harmonic expansion of the dipolar fluid's static structure factor, provided by the MSA theory and molecular dynamics simulations.
Collapse
Affiliation(s)
- Luis F Elizondo-Aguilera
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), Linder Höhe, 51170 Köln, Germany
| | - Ernesto C Cortés-Morales
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Pablo F Zubieta-Rico
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Magdaleno Medina-Noyola
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Ramón Castañeda-Priego
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Mexico
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), Linder Höhe, 51170 Köln, Germany
| | - Gabriel Pérez-Ángel
- Departamento de Física Aplicada, CINVESTAV del IPN, A. P. 73 "Cordemex", 97310 Mérida, Yucatán, Mexico
| |
Collapse
|
16
|
Olais-Govea JM, López-Flores L, Zepeda-López JB, Medina-Noyola M. Interference between the glass, gel, and gas-liquid transitions. Sci Rep 2019; 9:16445. [PMID: 31712562 PMCID: PMC6848111 DOI: 10.1038/s41598-019-52591-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/17/2019] [Indexed: 12/02/2022] Open
Abstract
Recent experiments and computer simulations have revealed intriguing phenomenological fingerprints of the interference between the ordinary equilibrium gas-liquid phase transition and the non-equilibrium glass and gel transitions. We thus now know, for example, that the liquid-gas spinodal line and the glass transition loci intersect at a finite temperature and density, that when the gel and the glass transitions meet, mechanisms for multistep relaxation emerge, and that the formation of gels exhibits puzzling latency effects. In this work we demonstrate that the kinetic perspective of the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory of irreversible processes in liquids provides a unifying first-principles microscopic theoretical framework to describe these and other phenomena associated with spinodal decomposition, gelation, glass transition, and their combinations. The resulting scenario is in reality the competition between two kinetically limiting behaviors, associated with the two distinct dynamic arrest transitions in which the liquid-glass line is predicted to bifurcate at low densities, below its intersection with the spinodal line.
Collapse
Affiliation(s)
- José Manuel Olais-Govea
- Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, SLP, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 300, 78211, San Luis Potosí, SLP, Mexico
- Tecnologico de Monterrey, Writing Lab, TecLab, Vicerrectoría de Investigación y Transferencia de Tecnología, Monterrey, 64849, NL, Mexico
| | - Leticia López-Flores
- Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, SLP, Mexico.
| | - Jesús Benigno Zepeda-López
- Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, SLP, Mexico
| | - Magdaleno Medina-Noyola
- Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, SLP, Mexico
| |
Collapse
|