1
|
Marini Bettolo Marconi U, Caprini L. Spontaneous generation of angular momentum in chiral active crystals. SOFT MATTER 2025; 21:2586-2606. [PMID: 40071394 DOI: 10.1039/d4sm01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
We study a two-dimensional chiral active crystal composed of underdamped chiral active particles. These particles, characterized by intrinsic handedness and persistence, interact via linear forces derived from harmonic potentials. Chirality plays a pivotal role in shaping the system's behavior: it reduces displacement and velocity fluctuations while inducing cross-spatial correlations among different Cartesian components of velocity. These features distinguish chiral crystals from their non-chiral counterparts, leading to the emergence of net angular momentum, as predicted analytically. This angular momentum, driven by the torque generated by the chiral active force, exhibits a non-monotonic dependence on the degree of chirality. Additionally, it contributes to the entropy production rate, as revealed through a path-integral analysis. We investigate the dynamic properties of the crystal in both Fourier and real space. Chirality induces a non-dispersive peak in the displacement spectrum, which underlies the generation of angular momentum and oscillations in time-dependent autocorrelation functions or mean-square displacement, all of which are analytically predicted.
Collapse
Affiliation(s)
| | - Lorenzo Caprini
- Sapienza University of Rome, Piazzale Aldo Moro 2, Rome, Italy.
| |
Collapse
|
2
|
Caprini L, Marini Bettolo Marconi U, Löwen H. Entropy production and collective excitations of crystals out of equilibrium: The concept of entropons. Phys Rev E 2023; 108:044603. [PMID: 37978682 DOI: 10.1103/physreve.108.044603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
We study the collective vibrational excitations of crystals under out-of-equilibrium steady conditions that give rise to entropy production. Their excitation spectrum comprises equilibriumlike phonons of thermal origin and additional collective excitations called entropons because each of them represents a mode of spectral entropy production. Entropons coexist with phonons and dominate them when the system is far from equilibrium while they are negligible in near-equilibrium regimes. The concept of entropons has been recently introduced and verified in a special case of crystals formed by self-propelled particles. Here we show that entropons exist in a broader class of active crystals that are intrinsically out of equilibrium and characterized by the lack of detailed balance. After a general derivation, several explicit examples are discussed, including crystals consisting of particles with alignment interactions and frictional contact forces.
Collapse
Affiliation(s)
- L Caprini
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II: Weiche Materie, Universitätsstrasse, 40225 Düsseldorf, Germany
| | - U Marini Bettolo Marconi
- Physics Department, Scuola di Scienze e Tecnologie, Università di Camerino - via Madonna delle Carceri, 62032 Camerino, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - H Löwen
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II: Weiche Materie, Universitätsstrasse, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Oh Y, Baek Y. Effects of the self-propulsion parity on the efficiency of a fuel-consuming active heat engine. Phys Rev E 2023; 108:024602. [PMID: 37723679 DOI: 10.1103/physreve.108.024602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/21/2023] [Indexed: 09/20/2023]
Abstract
We propose a thermodynamically consistent, analytically tractable model of steady-state active heat engines driven by both temperature difference and a constant chemical driving. While the engine follows the dynamics of the active Ornstein-Uhlenbeck particle, its self-propulsion stems from the mechanochemical coupling with the fuel consumption dynamics, allowing for both even- and odd-parity self-propulsion forces. Using the standard methods of stochastic thermodynamics, we show that the entropy production of the engine satisfies the conventional Clausius relation, based on which we define the efficiency of the model that is bounded from above by the second law of thermodynamics. Using this framework, we obtain exact expressions for the efficiency at maximum power. The results show that the engine performance has a nonmonotonic dependence on the magnitude of the chemical driving and that the even-parity (odd-parity) engines perform better when the size of the engine is smaller (larger) than the persistence length of the active particle. We also discuss the existence of a tighter upper bound on the efficiency of the odd-parity engines stemming from the detailed structure of the entropy production.
Collapse
Affiliation(s)
- Yongjae Oh
- Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongjoo Baek
- Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Caprini L, Marini Bettolo Marconi U, Puglisi A, Löwen H. Entropons as collective excitations in active solids. J Chem Phys 2023; 159:041102. [PMID: 37486049 DOI: 10.1063/5.0156312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
The vibrational dynamics of solids is described by phonons constituting basic collective excitations in equilibrium crystals. Here, we consider a non-equilibrium active solid, formed by self-propelled particles, which bring the system into a non-equilibrium steady-state. We identify novel vibrational collective excitations of non-equilibrium (active) origin, which coexist with phonons and dominate over them when the system is far from equilibrium. These vibrational excitations are interpreted in the framework of non-equilibrium physics, in particular, stochastic thermodynamics. We call them "entropons" because they are the modes of spectral entropy production (at a given frequency and wave vector). The existence of entropons could be verified in future experiments on dense self-propelled colloidal Janus particles and granular active matter, as well as in living systems, such as dense cell monolayers.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II-Weiche Materie, D-40225 Düsseldorf, Germany
| | - Umberto Marini Bettolo Marconi
- Scuola di Scienze e Tecnologie, Università di Camerino, via Madonna delle Carceri, 62032 Camerino, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, I-06123 Perugia, Italy
| | - Andrea Puglisi
- Istituto dei Sistemi Complessi-CNR and Università di Roma Sapienza, P.le Aldo Moro 2, 00185 Rome, Italy
- INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Hartmut Löwen
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II-Weiche Materie, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Sprenger AR, Caprini L, Löwen H, Wittmann R. Dynamics of active particles with translational and rotational inertia. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:305101. [PMID: 37059111 DOI: 10.1088/1361-648x/accd36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Inertial effects affecting both the translational and rotational dynamics are inherent to a broad range of active systems at the macroscopic scale. Thus, there is a pivotal need for proper models in the framework of active matter to correctly reproduce experimental results, hopefully achieving theoretical insights. For this purpose, we propose an inertial version of the active Ornstein-Uhlenbeck particle (AOUP) model accounting for particle mass (translational inertia) as well as its moment of inertia (rotational inertia) and derive the full expression for its steady-state properties. The inertial AOUP dynamics introduced in this paper is designed to capture the basic features of the well-established inertial active Brownian particle model, i.e. the persistence time of the active motion and the long-time diffusion coefficient. For a small or moderate rotational inertia, these two models predict similar dynamics at all timescales and, in general, our inertial AOUP model consistently yields the same trend upon changing the moment of inertia for various dynamical correlation functions.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Ferretti F, Grosse-Holz S, Holmes C, Shivers JL, Giardina I, Mora T, Walczak AM. Signatures of irreversibility in microscopic models of flocking. Phys Rev E 2022; 106:034608. [PMID: 36266796 DOI: 10.1103/physreve.106.034608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Flocking in d=2 is a genuine nonequilibrium phenomenon for which irreversibility is an essential ingredient. We study a class of minimal flocking models whose only source of irreversibility is self-propulsion and use the entropy production rate (EPR) to quantify the departure from equilibrium across their phase diagrams. The EPR is maximal in the vicinity of the order-disorder transition, where reshuffling of the interaction network is fast. We show that signatures of irreversibility come in the form of asymmetries in the steady-state distribution of the flock's microstates. These asymmetries occur as consequences of the time-reversal symmetry breaking in the considered self-propelled systems, independently of the interaction details. In the case of metric pairwise forces, they reduce to local asymmetries in the distribution of pairs of particles. This study suggests a possible use of pair asymmetries both to quantify the departure from equilibrium and to learn relevant information about aligning interaction potentials from data.
Collapse
Affiliation(s)
- Federica Ferretti
- Dipartimento di Fisica, Università Sapienza, 00185 Rome, Italy
- Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, UOS Sapienza, 00185 Rome, Italy
| | - Simon Grosse-Holz
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institut Curie, Paris 75005, France
| | - Caroline Holmes
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Irene Giardina
- Dipartimento di Fisica, Università Sapienza, 00185 Rome, Italy
- Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, UOS Sapienza, 00185 Rome, Italy
- INFN, Unità di Roma 1, 00185 Rome, Italy
| | - Thierry Mora
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| |
Collapse
|
7
|
Bhattacharya K, Chakraborty A. Aggregation of self-propelled particles with sensitivity to local order. Phys Rev E 2022; 105:044124. [PMID: 35590585 DOI: 10.1103/physreve.105.044124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
We study a system of self-propelled particles (SPPs) in which individual particles are allowed to switch between a fast aligning and a slow nonaligning state depending upon the degree of the alignment in the neighborhood. The switching is modeled using a threshold for the local order parameter. This additional attribute gives rise to a mixed phase, in contrast to the ordered phases found in clean SPP systems. As the threshold is increased from zero, we find the sudden appearance of clusters of nonaligners. Clusters of nonaligners coexist with moving clusters of aligners with continual coalescence and fragmentation. The behavior of the system with respect to the clustering of nonaligners appears to be very different for values of low and high global densities. In the low density regime, for an optimal value of the threshold, the largest cluster of nonaligners grows in size up to a maximum that varies logarithmically with the total number of particles. However, on further increasing the threshold the size decreases. In contrast, for the high density regime, an initial abrupt rise is followed by the appearance of a giant cluster of nonaligners. The latter growth can be characterized as a continuous percolation transition. In addition, we find that the speed differences between aligners and nonaligners is necessary for the segregation of aligners and nonaligners.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Department of Industrial Engineering and Management, Aalto University School of Science, 00076 Aalto, Finland
- Department of Computer Science, Aalto University School of Science, 00076 Aalto, Finland
| | - Abhijit Chakraborty
- Complexity Science Hub Vienna, Josefstaedter Strasse 39, 1080 Vienna, Austria
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, 1 Nakaadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8306, Japan
| |
Collapse
|
8
|
Contagion dynamics in self-organized systems of self-propelled agents. Sci Rep 2022; 12:2588. [PMID: 35173183 PMCID: PMC8850614 DOI: 10.1038/s41598-022-06083-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
We investigate the susceptible-infectious-recovered contagion dynamics in a system of self-propelled particles with polar alignment. Using agent-based simulations, we analyze the outbreak process for different combinations of the spatial parameters (alignment strength and Peclet number) and epidemic parameters (infection-lifetime transmissibility and duration of the individual infectious period). We show that the emerging spatial features strongly affect the contagion process. The ordered homogeneous states greatly disfavor infection spreading, due to their limited mixing, only achieving large outbreaks for high values of the individual infectious duration. The disordered homogeneous states also present low contagion capabilities, requiring relatively high values of both epidemic parameters to reach significant spreading. Instead, the inhomogeneous ordered states display high outbreak levels for a broad range of parameters. The formation of bands and clusters in these states favor infection propagation through a combination of processes that develop inside and outside of these structures. Our results highlight the importance of self-organized spatiotemporal features in a variety of contagion processes that can describe epidemics or other propagation dynamics, thus suggesting new approaches for understanding, predicting, and controlling their spreading in a variety of self-organized biological systems, ranging from bacterial swarms to animal groups and human crowds.
Collapse
|
9
|
Jiang H, Hou Z. Nonequilibrium Dynamics of Chemically Active Particles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huijun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhonghuai Hou
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
10
|
Zhao Y, Ihle T, Han Z, Huepe C, Romanczuk P. Phases and homogeneous ordered states in alignment-based self-propelled particle models. Phys Rev E 2021; 104:044605. [PMID: 34781565 DOI: 10.1103/physreve.104.044605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/20/2021] [Indexed: 01/29/2023]
Abstract
We study a set of models of self-propelled particles that achieve collective motion through similar alignment-based dynamics, considering versions with and without repulsive interactions that do not affect the heading directions. We explore their phase space within a broad range of values of two nondimensional parameters (coupling strength and Peclet number), characterizing their polarization and degree of clustering. The resulting phase diagrams display equivalent, similarly distributed regions for all models with repulsion. The diagrams without repulsion exhibit differences, in particular for high coupling strengths. We compare the boundaries and representative states of all regions, identifying various regimes that had not been previously characterized. We analyze in detail three types of homogeneous polarized states, comparing them to existing theoretical and numerical results by computing their velocity and density correlations, giant number fluctuations, and local order-density coupling. We find that they all deviate in one way or another from the theoretical predictions, attributing these differences either to the remaining inhomogeneities or to finite-size effects. We discuss our results in terms of the generic or specific features of each model, their thermodynamic limit, and the high mixing and low mixing regimes. Our study provides a broad, overarching perspective on the multiple phases and states found in alignment-based self-propelled particle models.
Collapse
Affiliation(s)
- Yinong Zhao
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Thomas Ihle
- Institute of Physics, University of Greifswald, 17489 Greifswald, Germany
| | - Zhangang Han
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Cristián Huepe
- School of Systems Science, Beijing Normal University, Beijing 100875, China.,CHuepe Labs, Chicago, Illinois 60622, USA.,Northwestern Institute on Complex Systems and ESAM, Northwestern University, Evanston, Illinois 60208, USA
| | - Pawel Romanczuk
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| |
Collapse
|
11
|
GrandPre T, Klymko K, Mandadapu KK, Limmer DT. Entropy production fluctuations encode collective behavior in active matter. Phys Rev E 2021; 103:012613. [PMID: 33601608 DOI: 10.1103/physreve.103.012613] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 11/07/2022]
Abstract
We derive a general lower bound on distributions of entropy production in interacting active matter systems. The bound is tight in the limit that interparticle correlations are small and short-ranged, which we explore in four canonical active matter models. In all models studied, the bound is weak where collective fluctuations result in long-ranged correlations, which subsequently links the locations of phase transitions to enhanced entropy production fluctuations. We develop a theory for the onset of enhanced fluctuations and relate it to specific phase transitions in active Brownian particles. We also derive optimal control forces that realize the dynamics necessary to tune dissipation and manipulate the system between phases. In so doing, we uncover a general relationship between entropy production and pattern formation in active matter, as well as ways of controlling it.
Collapse
Affiliation(s)
- Trevor GrandPre
- Department of Physics, University of California, Berkeley, California 94609, USA
| | - Katherine Klymko
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
| | - Kranthi K Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94609, USA.,Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
| | - David T Limmer
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA.,Department of Chemistry, University of California, Berkeley, California 94609, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA.,Kavli Energy NanoScience Institute, Berkeley, California 94609, USA
| |
Collapse
|
12
|
Abstract
Large-scale collective behavior in suspensions of active particles can be understood from the balance of statistical forces emerging beyond the direct microscopic particle interactions. Here we review some aspects of the collective forces that can arise in suspensions of self-propelled active Brownian particles: wall forces under confinement, interfacial forces, and forces on immersed bodies mediated by the suspension. Even for non-aligning active particles, these forces are intimately related to a non-uniform polarization of particle orientations induced by walls and bodies, or inhomogeneous density profiles. We conclude by pointing out future directions and promising areas for the application of collective forces in synthetic active matter, as well as their role in living active matter.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany.
| |
Collapse
|