1
|
Qian Y, Li S. Optimal three-dimensional particle shapes for maximally dense saturated packing. J Chem Phys 2024; 161:014505. [PMID: 38949589 DOI: 10.1063/5.0217809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024] Open
Abstract
Saturated packing is a random packing state of particles widely applied in investigating the physicochemical properties of granular materials. Optimizing particle shape to maximize packing density is a crucial challenge in saturated packing research. The known optimal three-dimensional shape is an ellipsoid with a saturated packing density of 0.437 72(51). In this work, we generate saturated packings of three-dimensional asymmetric shapes, including spherocylinders, cones, and tetrahedra, via the random sequential adsorption algorithm and investigate their packing properties. Results show that the optimal shape of asymmetric spherocylinders gives the maximum density of 0.4338(9), while cones achieve a higher value of 0.4398(10). Interestingly, tetrahedra exhibit two distinct optimal shapes with significantly high densities of 0.4789(19) and 0.4769(18), which surpass all previous results in saturated packing. The study of adsorption kinetics reveals that the two optimal shapes of tetrahedra demonstrate notably higher degrees of freedom and faster growth rates of the particle number. The analysis of packing structures via the density pair-correlation function shows that the two optimal shapes of tetrahedra possess faster transitions from local to global packing densities.
Collapse
Affiliation(s)
- Yutong Qian
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Shuixiang Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- State Key Laboratory for Turbulence and Complex System, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Wang W, Chen Z, Gao Y, Chen C, Jiao Y, Zhang S. Spheroid models to elaborate the broken symmetry and equivalent volume of molecules in crystalline phase. Phys Rev E 2024; 109:064603. [PMID: 39020901 DOI: 10.1103/physreve.109.064603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/19/2024] [Indexed: 07/20/2024]
Abstract
Dense packing of particles has provided powerful models to elaborate the important structural features of matter in various systems such as liquid, glassy, and crystalline phases. The simplest sphere packing models can represent and capture salient properties of the building blocks for covalent, metallic, and ionic crystals; it, however, becomes insufficient to reflect the broken symmetry of the commonly anisotropic molecules in molecular crystals. Here, we develop spheroid models with a minimal degree of anisotropy, which serve as a simple geometrical representation for a rich spectrum of molecules-including both isotropic and anisotropic, convex and concave ones-in crystalline phases. Our models are determined via an inverse packing approach: Given a molecular crystal, an optimal spheroid model is constructed using a contact diagram, which depicts the packing relationship between neighboring molecules within the crystal. The spheroid models are capable of accurately capturing the broken symmetry and characterizing the equivalent volume of molecules in the crystalline phases. Moreover, our model retrieves such molecular information from low-quality x-ray diffraction data with poorly resolved structures, and by using soft spheroids, it can also describe the packing behavior in cocrystals.
Collapse
|
3
|
Ramirez LS, Pasinetti PM, Ramirez-Pastor AJ. Random sequential adsorption of self-avoiding chains on two-dimensional lattices. Phys Rev E 2023; 107:064106. [PMID: 37464601 DOI: 10.1103/physreve.107.064106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/12/2023] [Indexed: 07/20/2023]
Abstract
Random sequential adsorption of extended objects deposited on two-dimensional regular lattices is studied. The depositing objects are chains formed by occupying adsorption sites on the substrate through a self-avoiding walk of k lattice steps; these objects are also called "tortuous k-mers." We study how the jamming coverage, θ_{j,k}, depends on k for lattices with different connectivity (honeycomb, square, and triangular). The dependence can be fitted by the function θ_{j,k}=θ_{j,k→∞}+B/k+C/k^{2}, where B and C are found to be shared parameters by the three lattices and θ_{j,k→∞} (>0) is the jamming coverage for infinitely long k-mers for each of them. The jamming coverage is found to have a growing behavior with the connectivity of the lattice. In addition, θ_{j,k} is found to be higher for tortuous k-mers than for the previously reported for linear k-mers in each lattice. The results were obtained by means of numerical simulation through an efficient algorithm whose characteristics are discussed in detail. The computational method introduced here also allows us to investigate the full-time kinetics of the surface coverage θ_{k}(t) [θ_{j,k}≡θ_{k}(t→∞)]. Along this line, different time regimes are identified and characterized.
Collapse
Affiliation(s)
- L S Ramirez
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, Ejército de Los Andes 950, D5700HHW, San Luis, Argentina and Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain
| | - P M Pasinetti
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, Ejército de Los Andes 950, D5700HHW, San Luis, Argentina
| | - A J Ramirez-Pastor
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, Ejército de Los Andes 950, D5700HHW, San Luis, Argentina
| |
Collapse
|
4
|
Random sequential adsorption: An efficient tool for investigating the deposition of macromolecules and colloidal particles. Adv Colloid Interface Sci 2022; 306:102692. [DOI: 10.1016/j.cis.2022.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
|
5
|
Cieśla M, Kubala P, Kozubek K. Algorithms to generate saturated random sequential adsorption packings built of rounded polygons. Phys Rev E 2021; 103:063308. [PMID: 34271732 DOI: 10.1103/physreve.103.063308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023]
Abstract
We present the algorithm for generating strictly saturated random sequential adsorption packings built of rounded polygons. It can be used in studying various properties of such packings built of a wide variety of different shapes, and in modeling monolayers obtained during irreversible adsorption processes of complex molecules. Here, we apply the algorithm to study the densities of packings built of rounded regular polygons. Contrary to packings built of regular polygons, where the packing fraction grows with an increasing number of polygon sides, here the packing fraction reaches its maximum for packings built of rounded regular triangles. With a growing number of polygon sides and increasing rounding radius, the packing fractions tend to the limit given by a packing built of disks. However, they are still slightly higher, even for the rounded 25-gon, which is the highest-sided regular polygon studied here.
Collapse
Affiliation(s)
- Michał Cieśla
- Institute of Theoretical Physics, Department of Statistical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Piotr Kubala
- Institute of Theoretical Physics, Department of Statistical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Konrad Kozubek
- Institute of Theoretical Physics, Department of Statistical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
6
|
Chen S, Zhao J, Su H, Li H, Wang H, Hu Z, Bao J, Zeng J. Pd–Pt Tesseracts for the Oxygen Reduction Reaction. J Am Chem Soc 2021; 143:496-503. [DOI: 10.1021/jacs.0c12282] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sheng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jiankang Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Hongyang Su
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Hongliang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Huili Wang
- School of Physics, Nankai University, Tianjin 300071, PR China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin 300071, PR China
| | - Jun Bao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
7
|
Tartaglione V, Farges C, Sabatier J. Nonlinear dynamical modeling of adsorption and desorption processes with power-law kinetics: Application to CO_{2} capture. Phys Rev E 2020; 102:052102. [PMID: 33327189 DOI: 10.1103/physreve.102.052102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/10/2020] [Indexed: 11/07/2022]
Abstract
Modeling of random sequential adsorption (RSA) process is studied in this paper as this kind of process is close to the surface adsorption phenomenon that is, for instance, exploited in gas sensors or for liquid or gas purification. Analysis and simulation of the RSA process is first performed to highlight a power-law kinetic behavior. Such behaviors are often modeled in the literature with fractional models. The paper, however, shows that fractional models are not able to capture some important properties of the RSA process. A nonlinear model and the associated parameters tuning method are, thus, proposed. A discussion on the ability of the proposed model to capture the power-law kinetics without exhibiting some of the drawbacks of fractional models is proposed. This nonlinear model is then modified to take into account the reverse desorption process. The proposed modeling approach is applied to experimental data of CO_{2} capture.
Collapse
Affiliation(s)
- Vincent Tartaglione
- IMS Laboratory, Bordeaux University, UMR CNRS 5218-351, Cours de la Libération, 33405 Talence Cedex, France
| | - Christophe Farges
- IMS Laboratory, Bordeaux University, UMR CNRS 5218-351, Cours de la Libération, 33405 Talence Cedex, France
| | - Jocelyn Sabatier
- IMS Laboratory, Bordeaux University, UMR CNRS 5218-351, Cours de la Libération, 33405 Talence Cedex, France
| |
Collapse
|
8
|
Kubala P, Cieśla M, Ziff RM. Random sequential adsorption of particles with tetrahedral symmetry. Phys Rev E 2019; 100:052903. [PMID: 31870013 DOI: 10.1103/physreve.100.052903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Indexed: 06/10/2023]
Abstract
We study random sequential adsorption (RSA) of a class of solids that can be obtained from a cube by specific cutting of its vertices, in order to find out how the transition from tetrahedral to octahedral symmetry affects the densities of the resulting jammed packings. We find that in general solids of octahedral symmetry form less dense packing; however, the lowest density was obtained for the packing built of tetrahedra. The densest packing is formed by a solid close to a tetrahedron but with vertices and edges slightly cut. Its density is θ_{max}=0.41278±0.00059 and is higher than the mean packing fraction of spheres or cuboids but is lower than that for the densest RSA packings built of ellipsoids or spherocylinders. The density autocorrelation function of the studied packings is typical for random media and vanishes very quickly with distance.
Collapse
Affiliation(s)
- Piotr Kubala
- M. Smoluchowski Institute of Physics, Department of Statistical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Michał Cieśla
- M. Smoluchowski Institute of Physics, Department of Statistical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Robert M Ziff
- Center for the Study of Complex Systems and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
| |
Collapse
|