1
|
Mäkinen T, Parmar ADS, Bonfanti S, Alava MJ. Avalanches in Cu-Zr-Al metallic glasses. Phys Rev E 2025; 111:014107. [PMID: 39972719 DOI: 10.1103/physreve.111.014107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025]
Abstract
Metallic glasses have mechanical properties, which exhibit avalanches in the disguise of stress drops. We study these phenomena in a classical metallic glass system Cu-Zr-Al by athermal quasistatic shear and varying the element concentrations and for pure Cu-Zr 50/50 case the cooling rate. The resulting mechanical properties are close to the behavior found experimentally. At small strains, the pristine systems are akin to other glassy systems with a so-called gap distribution with a small positive exponent. Critical avalanching behavior is found only approaching the yield point. The post-yield stress drops are universal, and the gap distribution becomes flat.
Collapse
Affiliation(s)
- Tero Mäkinen
- Aalto University, Department of Applied Physics, P. O. Box 15600, 00076 Aalto, Espoo, Finland
| | - Anshul D S Parmar
- National Center for Nuclear Research, NOMATEN Centre of Excellence, ul. A. Soltana 7, 05-400 Swierk/Otwock, Poland
| | - Silvia Bonfanti
- National Center for Nuclear Research, NOMATEN Centre of Excellence, ul. A. Soltana 7, 05-400 Swierk/Otwock, Poland
| | - Mikko J Alava
- Aalto University, Department of Applied Physics, P. O. Box 15600, 00076 Aalto, Espoo, Finland
- National Center for Nuclear Research, NOMATEN Centre of Excellence, ul. A. Soltana 7, 05-400 Swierk/Otwock, Poland
| |
Collapse
|
2
|
He H, Liang H, Chu M, Jiang Z, de Pablo JJ, Tirrell MV, Narayanan S, Chen W. Transport coefficient approach for characterizing nonequilibrium dynamics in soft matter. Proc Natl Acad Sci U S A 2024; 121:e2401162121. [PMID: 39042671 PMCID: PMC11295068 DOI: 10.1073/pnas.2401162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024] Open
Abstract
Nonequilibrium states in soft condensed matter require a systematic approach to characterize and model materials, enhancing predictability and applications. Among the tools, X-ray photon correlation spectroscopy (XPCS) provides exceptional temporal and spatial resolution to extract dynamic insight into the properties of the material. However, existing models might overlook intricate details. We introduce an approach for extracting the transport coefficient, denoted as [Formula: see text], from the XPCS studies. This coefficient is a fundamental parameter in nonequilibrium statistical mechanics and is crucial for characterizing transport processes within a system. Our method unifies the Green-Kubo formulas associated with various transport coefficients, including gradient flows, particle-particle interactions, friction matrices, and continuous noise. We achieve this by integrating the collective influence of random and systematic forces acting on the particles within the framework of a Markov chain. We initially validated this method using molecular dynamics simulations of a system subjected to changes in temperatures over time. Subsequently, we conducted further verification using experimental systems reported in the literature and known for their complex nonequilibrium characteristics. The results, including the derived [Formula: see text] and other relevant physical parameters, align with the previous observations and reveal detailed dynamical information in nonequilibrium states. This approach represents an advancement in XPCS analysis, addressing the growing demand to extract intricate nonequilibrium dynamics. Further, the methods presented are agnostic to the nature of the material system and can be potentially expanded to hard condensed matter systems.
Collapse
Affiliation(s)
- HongRui He
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Miaoqi Chu
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Zhang Jiang
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Juan J. de Pablo
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Matthew V. Tirrell
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Suresh Narayanan
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| |
Collapse
|
3
|
Shekh Alshabab S, Markert B, Bamer F. Criticality in the fracture of silica glass: Insights from molecular mechanics. Phys Rev E 2024; 109:034110. [PMID: 38632794 DOI: 10.1103/physreve.109.034110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/02/2024] [Indexed: 04/19/2024]
Abstract
The universality of avalanches characterizing the inelastic response of disordered materials has the potential to bridge the gap from micro to macroscale. In this study, we explore the statistics and the scaling behavior of avalanches occurring during the fracture process in silica glass using molecular mechanics. We introduce a robust method for capturing and quantifying these avalanches, allowing us to perform rigorous statistical analyses, revealing universal power laws associated with critical phenomena. The influence of an initial crack is explored, observing deviations from mean-field predictions while maintaining the property of criticality. However, the avalanche exponents in the unnotched samples are predicted correctly by the mean-field depinning model. Furthermore, we investigate the strain-dependent probability density function, its cutoff function, and the interrelation between the critical exponents. Finally, we unveil distinct scaling behavior for small and large avalanches of the crack growth, shedding light on the underlying fracture mechanisms in silica glass.
Collapse
Affiliation(s)
| | - Bernd Markert
- Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany
| | - Franz Bamer
- Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
4
|
Guo W, Niiyama T, Yamada R, Wakeda M, Saida J. Synthesis and mechanical properties of highly structure-controlled Zr-based metallic glasses by thermal rejuvenation technique. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:154004. [PMID: 36731175 DOI: 10.1088/1361-648x/acb8a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
A novel thermal rejuvenation treatment facility for Zr-based bulk metallic glass (BMG) was developed, consisting of a rapid heating and indirect liquid nitrogen quenching process. The re-introduction of free volume into thermally rejuvenated BMG results in more disordered state. The rejuvenation improves ductility, implying that the re-introduced free volume aids in the recovery of the shear transformation zone (STZ) site and volume. Actually, it is confirmed that relaxation significantly reduces STZ volume; however, it is recovered by thermal rejuvenation. Molecular dynamics simulations also indicate that rejuvenation enhances homogeneous deformation. The current findings indicate that the thermal rejuvenation method is extremely effective for recovering or improving the ductility of metallic glass that has been lost due to relaxation.
Collapse
Affiliation(s)
- Wei Guo
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba-Aramaki, Sendai 980-8578, Japan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, People's Republic of China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Tomoaki Niiyama
- College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Rui Yamada
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba-Aramaki, Sendai 980-8578, Japan
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Masato Wakeda
- Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Junji Saida
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba-Aramaki, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Wang XJ, Lu YZ, Lu X, Huo JT, Wang YJ, Wang WH, Dai LH, Jiang MQ. Elastic criterion for shear-banding instability in amorphous solids. Phys Rev E 2022; 105:045003. [PMID: 35590559 DOI: 10.1103/physreve.105.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
In amorphous solids, plastic flow is prone to localization into shear bands via an avalanche of shear-transformation (ST) rearrangements of constituent atoms or particles. However, such banding instability still remains a lack of direct experimental evidence. Using a real 3D colloidal glass under shear as proof of principle, we study STs' avalanches into shear banding that is controlled by strain rates. We demonstrate that, accompanying the emergent shear banding, the elastic response fields of the system, typical of a quadrupole for shear and a centrosymmetry for dilatation, lose the Eshelby-type spatial symmetry; instead, a strong correlation appears preferentially along the banding direction. By quantifying the fields' spatial decay, we identify an elastic criterion for the shear-banding instability, that is, the strongly correlated length of dilatation is smaller than the full length of shear correlation. Specifically, ST-induced free volume has to be confined within the elastic shear domain of ST so that those STs can self-organize to trigger shear banding. This physical picture is directly visualized by tracing the real-space evolution of local dilatation and ST particles. The present work unites the two classical mechanisms: free volume and STs, for the fundamental understanding of shear banding in amorphous solids.
Collapse
Affiliation(s)
- X J Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Y Z Lu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, People's Republic of China
| | - X Lu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, People's Republic of China
| | - J T Huo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Y J Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - W H Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - L H Dai
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - M Q Jiang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Bhaumik H, Foffi G, Sastry S. Avalanches, Clusters, and Structural Change in Cyclically Sheared Silica Glass. PHYSICAL REVIEW LETTERS 2022; 128:098001. [PMID: 35302798 DOI: 10.1103/physrevlett.128.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We investigate avalanches and clusters associated with plastic rearrangements and the nature of structural change in the prototypical strong glass, silica, computationally. We perform a detailed analysis of avalanches, and of spatially disconnected clusters that constitute them, for a wide range of system sizes. Although qualitative aspects of yielding in silica are similar to other glasses, the statistics of clusters exhibits significant differences, which we associate with differences in local structure. Across the yielding transition, anomalous structural change and densification, associated with a suppression of tetrahedral order, is observed to accompany strain localization.
Collapse
Affiliation(s)
- Himangsu Bhaumik
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Giuseppe Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Srikanth Sastry
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
7
|
Bruns M, Varnik F. Rejuvenation in Deep Thermal Cycling of a Generic Model Glass: A Study of Per-Particle Energy Distribution. MATERIALS 2022; 15:ma15030829. [PMID: 35160779 PMCID: PMC8836976 DOI: 10.3390/ma15030829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
We investigate the effect of low temperature (cryogenic) thermal cycling on a generic model glass and observe signature of rejuvenation in terms of per-particle potential energy distributions. Most importantly, these distributions become broader and its average values successively increase when applying consecutive thermal cycles. We show that linear dimension plays a key role for these effects to become visible, since we do only observe a weak effect for a cubic system of roughly one hundred particle diameter but observe strong changes for a rule-type geometry with the longest length being two thousand particle diameters. A consistent interpretation of this new finding is provided in terms of a competition between relaxation processes, which are inherent to glassy systems, and excitation due to thermal treatment. In line with our previous report (Bruns et al., PRR 3, 013234 (2021)), it is shown that, depending on the parameters of thermal cycling, rejuvenation can be either too weak to be detected or strong enough for a clear observation.
Collapse
|