1
|
LeVan J, Baalrud SD. Intrinsic bulk viscosity of the one-component plasma. Phys Rev E 2025; 111:015202. [PMID: 39972891 DOI: 10.1103/physreve.111.015202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 02/21/2025]
Abstract
The intrinsic bulk viscosity of the one-component plasma (OCP) is computed and analyzed using equilibrium molecular dynamics simulations and the Green-Kubo formalism. It is found that bulk viscosity exhibits a maximum at Γ≈1, corresponding to the condition that the average kinetic energy of particles equals the potential energy at the average interparticle spacing. The weakly coupled and strongly coupled limits are analyzed and used to construct a model that captures the full range of coupling strengths simulated: Γ≈10^{-2}-10^{2}. Simulations are also run of the Yukawa one-component plasma (YOCP) in order to understand the impact of electron screening. It is found that electron screening leads to a smaller bulk viscosity due to a reduction in the excess heat capacity of the system. Bulk viscosity is shown to be at least an order of magnitude smaller than shear viscosity in both the OCP and YOCP. The generalized frequency-dependent bulk viscosity coefficient is also analyzed. This is found to exhibit a peak near twice the plasma frequency in strongly coupled conditions, which is associated with the oscillatory decay observed in the bulk viscosity autocorrelation function. The generalized shear and bulk viscosity coefficients are found to have a similar magnitude for ω≳2ω_{p} at strongly coupled conditions.
Collapse
Affiliation(s)
- Jarett LeVan
- University of Michigan, Ann Arbor, Department of Nuclear Engineering and Radiological Sciences, Michigan 48109, USA
| | - Scott D Baalrud
- University of Michigan, Ann Arbor, Department of Nuclear Engineering and Radiological Sciences, Michigan 48109, USA
| |
Collapse
|
2
|
Khrapak SA. Entropy of strongly coupled Yukawa fluids. Phys Rev E 2024; 110:034602. [PMID: 39425314 DOI: 10.1103/physreve.110.034602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 10/21/2024]
Abstract
The entropy of strongly coupled Yukawa fluids is discussed from several perspectives. First, it is demonstrated that a vibrational paradigm of atomic dynamics in dense fluids can be used to obtain a simple and accurate estimate of the entropy without any adjustable parameters. Second, it is explained why a quasiuniversal value of the excess entropy of simple fluids at the freezing point should be expected, and it is demonstrated that a remaining very weak dependence of the freezing point entropy on the screening parameter in the Yukawa fluid can be described by a simple linear function. Third, a scaling of the excess entropy with the freezing temperature is examined, a modified form of the Rosenfeld-Tarazona scaling is put forward, and some consequences are briefly discussed. Fourth, the location of the Frenkel line on the phase diagram of Yukawa systems is discussed in terms of the excess entropy and compared with some predictions made in the literature. Fifth, the excess entropy scaling of the transport coefficients (self-diffusion, viscosity, and thermal conductivity) is reexamined using the contemporary datasets for the transport properties of Yukawa fluids. The results could be of particular interest in the context of complex (dusty) plasmas, colloidal suspensions, electrolytes, and other related systems with soft pairwise interactions.
Collapse
|
3
|
Salazar R, Cobos C, Jaramillo D, Bayona-Roa C. Comparative analysis of molecular dynamics and method of moments in two-dimensional concentric circular layers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:395603. [PMID: 38917836 DOI: 10.1088/1361-648x/ad5baf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
In this manuscript, we undertake an examination of a classical plasma deployed on two finite co-planar surfaces: a circular regionΩininto an annular regionΩoutwith a gap in between. It is studied both from the point of view of statistical mechanics and the electrostatics of continua media. We employ a dual perspective: the first one is by using molecular dynamics (MD) simulations to find the system's positional correlation functions and velocity distributions. That by modeling the system as a classical two-dimensional Coulomb plasma of point-like charged particlesq1andq2on the layersΩinandΩoutrespectively with no background density. The second one corresponds to a finite Surface Electrode (SE) composed of planar metallic layers displayed on the regionsΩin,Ωoutat constant voltagesVin,Voutconsidering axial symmetry. The surface charge density is calculated by the Method of Moments (MoM) under the electrostatic approximation. Point-like and differential charges elements interact via a1/r-electric potential in both cases. The thermodynamic averages of the number density, and electric potential due to the plasma depend on the coupling and the charge ratioξ=q1/q2once the geometry of the layers is fixed. On the other hand, the fields due to the SE depend on the layer's geometry and their voltage. In the document, is defined a protocol to properly compare the systems. We show that there are values of the coupling parameter, where the thermodynamic averages computed via MD agree with the results of MoM for attractiveξ=-1and repulsive layersξ = 1.
Collapse
Affiliation(s)
- Robert Salazar
- Dirección de Ingeniería Electrónica, Universidad ECCI, Bogotá, Colombia
| | - Cristian Cobos
- Dirección de Ingeniería Electrónica, Universidad ECCI, Bogotá, Colombia
| | - Diego Jaramillo
- Departamento de Ciencias, Universidad Antonio Nariño, Bogotá, Colombia
| | - Camilo Bayona-Roa
- Centro de Ingeniería Avanzada Investigación y Desarrollo-CIAID, Bogotá, Colombia
| |
Collapse
|
4
|
Sherlock M, Michel P, Strozzi DJ, Divol L, Kur E, Zimmerman G. Inverse bremsstrahlung absorption rate for super-Gaussian electron distribution functions including plasma screening. Phys Rev E 2024; 109:055201. [PMID: 38907485 DOI: 10.1103/physreve.109.055201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/29/2024] [Indexed: 06/24/2024]
Abstract
We provide analytic expressions for the effective Coulomb logarithm for inverse bremsstrahlung absorption which predict significant corrections to the Langdon effect and overall absorption rate compared to previous estimates. The calculation of the collisional absorption rate of laser energy in a plasma by the inverse bremsstrahlung mechanism usually makes the approximation of a constant Coulomb logarithm. We dispense with this approximation and instead take into account the velocity dependence of the Coulomb logarithm, leading to a more accurate expression for the absorption rate valid in both classical and quantum conditions. In contrast to previous work, the laser intensity enters into the Coulomb logarithm. In most laser-plasma interactions the electron distribution function is super-Gaussian [Langdon, Phys. Rev. Lett. 44, 575 (1980)0031-900710.1103/PhysRevLett.44.575], and we find the absorption rate under these conditions is increased by as much as ≈30% compared to previous estimates at low density. In many cases of interest the correction to Langdon's predicted reduction in absorption is large; for example at Z=6 and T_{e}=400eV the Langdon prediction for the absorption is in error by a factor of ≈2. However, we also account for the additional effect of plasma screening, which predicts a reduction in absorption by a similar amount (up to ≈30%). These two effects compete to determine the overall absorption, which may be increased or decreased, depending on the conditions. The corrections can be incorporated into radiation-hydrodynamics simulation codes by replacing the familiar Coulomb logarithm with an analytic expression which depends on the super-Gaussian order "M" and the screening length.
Collapse
Affiliation(s)
- M Sherlock
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - P Michel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D J Strozzi
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - L Divol
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - E Kur
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - G Zimmerman
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
5
|
Demyanov GS, Levashov PR. One-component plasma of a million particles via angular-averaged Ewald potential: A Monte Carlo study. Phys Rev E 2022; 106:015204. [PMID: 35974543 DOI: 10.1103/physreve.106.015204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In this work we derive a correct expression for the one-component plasma (OCP) energy via the angular-averaged Ewald potential (AAEP). Unlike Yakub and Ronchi [J. Low Temp. Phys. 139, 633 (2005)0022-229110.1007/s10909-005-5451-5], who had tried to obtain the same energy expression from a two-component plasma model, we used the original Ewald potential for an OCP. A constant in the AAEP was determined using the cluster expansion in the limit of weak coupling. The potential has a simple form suitable for effective numerical simulations. To demonstrate the advantages of the AAEP, we performed a number of Monte Carlo simulations for an OCP with up to a million particles in a wide range of the coupling parameter. Our computations turned out at least two orders of magnitude more effective than those with a traditional Ewald potential. A unified approach is offered for the determination of the thermodynamic limit in the whole investigated range. Our results are in good agreement with both theoretical data for a weakly coupled OCP and previous numerical simulations. We hope that the AAEP will be useful in path integral Monte Carlo simulations of the uniform electron gas.
Collapse
Affiliation(s)
- G S Demyanov
- Joint Institute for High Temperatures, Izhorskaya 13 Bldg 2, Moscow 125412, Russia and Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141701, Russia
| | - P R Levashov
- Joint Institute for High Temperatures, Izhorskaya 13 Bldg 2, Moscow 125412, Russia and Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
6
|
Lucco Castello F, Tolias P. Bridge functions of classical one-component plasmas. Phys Rev E 2022; 105:015208. [PMID: 35193199 DOI: 10.1103/physreve.105.015208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In a recent paper, Lucco Castello et al. [arXiv:2107.03537] performed systematic extractions of classical one-component plasma bridge functions from molecular dynamics simulations and provided an accurate parametrization that was incorporated in their isomorph-based empirically modified hypernetted chain approach for Yukawa one-component plasmas. Here the extraction technique and parametrization strategy are described in detail, while the deficiencies of earlier efforts are discussed. The structural and thermodynamic predictions of the updated version of the integral equation theory approach are compared with extensive available simulation results revealing a truly unprecedented level of accuracy in the entire dense liquid region of the Yukawa phase diagram.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
7
|
Scheiner B, Yoon TJ. Calculation of self-diffusion coefficients in supercritical carbon dioxide using mean force kinetic theory. J Chem Phys 2021; 154:134101. [PMID: 33832259 DOI: 10.1063/5.0045211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper presents an application of mean force kinetic theory (MFT) to the calculation of the self-diffusivity of CO2 in the supercritical fluid regime. Two modifications to the typical application of MFT are employed to allow its application to a system of molecular species. The first is the assumption that the inter-particle potential of mean force can be obtained from the molecule center-of-mass pair correlation function, which in the case of CO2 is the C-C pair correlation function. The second is a new definition of the Enskog factor that describes the effect of correlations at the surface of the collision volume. The new definition retains the physical picture that this quantity represents a local density increase, resulting from particle correlations, relative to that in the zero density homogeneous fluid limit. These calculations are facilitated by the calculation of pair correlation functions from molecular dynamics (MD) simulations using the FEPM2 molecular CO2 model. The self-diffusivity calculated from theory is in good agreement with that from MD simulations up to and slightly beyond the density at the location of the Frenkel line. The calculation is compared with and is found to perform similarly well to other commonly used models but has a greater potential for application to systems of mixed species and to systems of particles with long range interatomic potentials due to electrostatic interactions.
Collapse
Affiliation(s)
- Brett Scheiner
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Tae Jun Yoon
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| |
Collapse
|
8
|
Khrapak S, Khrapak A. Prandtl Number in Classical Hard-Sphere and One-Component Plasma Fluids. Molecules 2021; 26:821. [PMID: 33562466 PMCID: PMC7915297 DOI: 10.3390/molecules26040821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
The Prandtl number is evaluated for the three-dimensional hard-sphere and one-component plasma fluids, from the dilute weakly coupled regime up to a dense strongly coupled regime near the fluid-solid phase transition. In both cases, numerical values of order unity are obtained. The Prandtl number increases on approaching the freezing point, where it reaches a quasi-universal value for simple dielectric fluids of about ≃1.7. Relations to two-dimensional fluids are briefly discussed.
Collapse
Affiliation(s)
- Sergey Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia;
| | | |
Collapse
|
9
|
Scheiner B, Baalrud SD. Viscosity of the magnetized strongly coupled one-component plasma. Phys Rev E 2021; 102:063202. [PMID: 33466065 DOI: 10.1103/physreve.102.063202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/10/2020] [Indexed: 11/07/2022]
Abstract
The viscosity tensor of the magnetized one-component plasma, consisting of five independent shear viscosity coefficients, a bulk viscosity coefficient, and a cross coefficient, is computed using equilibrium molecular dynamics simulations and the Green-Kubo relations. A broad range of Coulomb coupling and magnetization strength conditions are studied. Magnetization is found to strongly influence the shear viscosity coefficients when the gyrofrequency exceeds the Coulomb collision frequency. Three regimes are identified as the Coulomb coupling strength and magnetization strength are varied. The Green-Kubo relations are used to separate kinetic and potential energy contributions to each viscosity coefficient, showing how each contribution depends upon the magnetization strength. The shear viscosity coefficient associated with the component of the pressure tensor parallel to the magnetic field, and the two coefficients associated with the component perpendicular to the magnetic field, are all found to merge to a common value at strong Coulomb coupling.
Collapse
Affiliation(s)
- Brett Scheiner
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Scott D Baalrud
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
10
|
Khrapak SA. Vibrational model of thermal conduction for fluids with soft interactions. Phys Rev E 2021; 103:013207. [PMID: 33601514 DOI: 10.1103/physreve.103.013207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/22/2020] [Indexed: 11/07/2022]
Abstract
A vibrational model of heat transfer in simple liquids with soft pairwise interatomic interactions is discussed. A general expression is derived, which involves an averaging over the liquid collective mode excitation spectrum. The model is applied to quantify heat transfer in a dense Lennard-Jones liquid and a strongly coupled one-component plasma. Remarkable agreement with the available numerical results is documented. A similar picture does not apply to the momentum transfer and shear viscosity of liquids.
Collapse
Affiliation(s)
- Sergey A Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia and Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 82234 Weßling, Germany
| |
Collapse
|
11
|
Scheiner B, Baalrud SD. Mean force kinetic theory applied to self-diffusion in supercritical Lennard-Jones fluids. J Chem Phys 2020; 152:174102. [DOI: 10.1063/5.0005435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Brett Scheiner
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52240, USA
| | - Scott D. Baalrud
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52240, USA
| |
Collapse
|