1
|
Keyvani F, Safaei A, Kazemzadeh Y, Riazi M, Qajar J. Impact of nanopore confinement on phase behavior and enriched gas minimum miscibility pressure in asphaltenic tight oil reservoirs. Sci Rep 2024; 14:13405. [PMID: 38862707 PMCID: PMC11167058 DOI: 10.1038/s41598-024-64194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Miscible gas injection in tight/shale oil reservoirs presents a complex problem due to various factors, including the presence of a large number of nanopores in the rock structure and asphaltene and heavy components in crude oil. This method performs best when the gas injection pressure exceeds the minimum miscibility pressure (MMP). Accordingly, accurate calculation of the MMP is of special importance. A critical issue that needs to be considered is that the phase behavior of the fluid in confined nanopores is substantially different from that of conventional reservoirs. The confinement effect may significantly affect fluid properties, flow, and transport phenomena characteristics in pore space, e.g., considerably changing the critical properties and enhancing fluid adsorption on the pore wall. In this study, we have investigated the MMP between an asphaltenic crude oil and enriched natural gas using Peng-Robinson (PR) and cubic-plus-association (CPA) equations of state (EoSs) by considering the effect of confinement, adsorption, the shift of critical properties, and the presence of asphaltene. According to the best of our knowledge, this is the first time a model has been developed considering all these factors for use in porous media. We used the vanishing interfacial tension (VIT) method and slim tube test data to calculate the MMP and examined the effects of pore radius, type/composition of injected gas, and asphaltene type on the computed MMP. The results showed that the MMP increased with an increasing radius of up to 100 nm and then remained almost constant. This is while the gas enrichment reduced the MMP. Asphaltene presence changed the trend of IFT reduction and delayed the miscibility achievement so that it was about 61% different from the model without the asphaltene precipitation effect. However, the type of asphaltene had little impact on the MMP, and the controlling factor was the amount of asphaltene in the oil. Moreover, although cubic EoSs are particularly popular for their simplicity and accuracy in predicting the behavior of hydrocarbon fluids, the CPA EoS is more accurate for asphaltenic oils, especially when the operating pressure is within the asphaltene precipitation range.
Collapse
Affiliation(s)
- Fatemeh Keyvani
- Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 7193616511, Iran
| | - Ali Safaei
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, 4358139115, Iran
- Enhanced Oil Recovery (EOR) Research Centre, IOR/EOR Research Institute, Shiraz University, Shiraz, 7193616511, Iran
| | - Yousef Kazemzadeh
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, 7516913817, Iran
| | - Masoud Riazi
- Enhanced Oil Recovery (EOR) Research Centre, IOR/EOR Research Institute, Shiraz University, Shiraz, 7193616511, Iran.
- School of Mining and Geoscience, Nazarbayev University, Kabanbay Batyr 53, 010000, Astana, Kazakhstan.
| | - Jafar Qajar
- Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 7193616511, Iran.
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Roosta A, Zendehboudi S, Rezaei N. Improving the estimation accuracy of confined vapor-liquid equilibria by fine-tuning the pure component parameter in the PC-SAFT equation of state. Phys Chem Chem Phys 2024; 26:13790-13803. [PMID: 38655721 DOI: 10.1039/d3cp05979k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We propose a thermodynamic model that combines the Young-Laplace equation and perturbed chain-statistical associating fluid theory (PC-SAFT) equation of state to estimate capillary condensation pressure in microporous and mesoporous sorbents. We adjust the PC-SAFT dispersion-energy parameter when the pore size becomes comparable to the molecular dimension. This modelling framework is applied to diverse systems containing associating and non-associating gases, various sorbents, and a wide range of temperatures. Our simulation results show that under extreme confinement, a higher value of the dispersion-energy parameter (ε) is required. Furthermore, using the experimental saturation pressure data for 18 different associating and non-associating confined fluids, we find that the shift in the PC-SAFT dispersion energy correlates with the ratio of the sorbent mean pore size to the PC-SAFT segment size (rp/σ). By fitting to the capillary condensation data, the relative deviation between the confined and bulk PC-SAFT dispersion energy parameter is only 0.1% at rp/σ = 15; however, this deviation starts to increase exponentially as rp/σ decreases. For a sorbent with large pores, when rp/σ > 15, the capillary condensation pressure results from our model are similar to the predictions from the Kelvin equation. Using a dataset containing 235 saturation pressure data points composed of 18 pure gases and 4 binary mixtures, the overall AARD% from our model is 12.26%, which verifies the good accuracy of our model. Because the mean sorbent pore radius (rp), the PC-SAFT energy parameter (ε), and segment size (σ) are known a priori, our model estimates the corrected energy parameter for small pores and, thus, extends its applicability.
Collapse
Affiliation(s)
- Aliakbar Roosta
- Department of Separation Science, School of Engineering Science, LUT University, Lappeenranta, Finland.
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL, Canada
| | - Nima Rezaei
- Department of Separation Science, School of Engineering Science, LUT University, Lappeenranta, Finland.
| |
Collapse
|
3
|
Lourenço RGC, Constantino PH, Tavares FW. A Unified Interaction Model for Multiphase Flows with the Lattice Boltzmann Method. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramon G. C. Lourenço
- Program of Chemical Engineering /COPPE ‐ Federal University of Rio de Janeiro, CEP: 21949‐972 Rio de Janeiro RJ Brazil
| | - Pedro H. Constantino
- Program of Chemical Engineering /COPPE ‐ Federal University of Rio de Janeiro, CEP: 21949‐972 Rio de Janeiro RJ Brazil
| | - Frederico W. Tavares
- Program of Chemical Engineering /COPPE ‐ Federal University of Rio de Janeiro, CEP: 21949‐972 Rio de Janeiro RJ Brazil
- Program in Engineering of Chemical and Biochemical Processes ‐ Chemical School Federal University of Rio de Janeiro, CEP Rio de Janeiro RJ Brazil
| |
Collapse
|
4
|
Asadi MB, De Rosis A, Zendehboudi S. Central-Moments-Based Lattice Boltzmann for Associating Fluids: A New Integrated Approach. J Phys Chem B 2020; 124:2900-2913. [PMID: 32017560 DOI: 10.1021/acs.jpcb.9b10989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic and thermodynamic behaviors of associating fluids play a crucial role in various science and engineering disciplines. Cubic plus association equation of state (CPA EOS) is implemented in a central-moments-based lattice Boltzmann method (LBM) in order to mimic the thermodynamic behavior of associating fluids. The pseudopotential approach is selected to model the multiphase thermodynamic characteristics such as reduced density of associating fluids. The priority of central-moments-based approach over multiple-relaxation-time collision operator is highlighted by performing double shear layers. The integration of central-moments-based LBM and CPA EOS is useful to simulate the dynamic and thermodynamic characteristics of associating fluids at high flow rate conditions, which is extended to high-density ratio scenarios by increasing the anisotropy order of gradient operator. In order to increase the stability of the model, a higher anisotropy order of the gradient operator is implemented; about 34 present reduction in spurious velocities is noticed in some cases. The type of gradient operator considerably affects the model thermodynamic consistency. Finally, the model is validated by observing a straight line in the Laplace law test. Prediction of thermodynamic behaviors of associating fluids is of significance in various applications including biological processes as well as fluid flow in porous media.
Collapse
Affiliation(s)
- Mohammad Bagher Asadi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Alessandro De Rosis
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Sohrab Zendehboudi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1C 5S7, Canada
| |
Collapse
|