1
|
Ageeva MV, Goldobin DS. Nonlinear bias of collective oscillation frequency induced by asymmetric Cauchy noise. CHAOS (WOODBURY, N.Y.) 2025; 35:023126. [PMID: 39908560 DOI: 10.1063/5.0239363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
We report the effect of nonlinear bias of the frequency of collective oscillations of sin-coupled phase oscillators subject to individual asymmetric Cauchy noises. The noise asymmetry makes the Ott-Antonsen ansatz inapplicable. We argue that, for all stable non-Gaussian noises, the tail asymmetry is not only possible (in addition to the trivial shift of the distribution median) but also generic in many physical and biophysical setups. For the theoretical description of the effect, we develop a mathematical formalism based on the circular cumulants. The derivation of rigorous asymptotic results can be performed on this basis but seems infeasible in traditional terms of the circular moments (the Kuramoto-Daido order parameters). The effect of the entrainment of individual oscillator frequencies by the global oscillations is also reported in detail. The accuracy of theoretical results based on the low-dimensional circular cumulant reductions is validated with the high-accuracy "exact" solutions calculated with the continued fraction method.
Collapse
Affiliation(s)
- Maria V Ageeva
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia
| | - Denis S Goldobin
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia
- Institute of Physics and Mathematics, Perm State University, Bukirev Street 15, 614990 Perm, Russia
- Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Goldobin DS, di Volo M, Torcini A. Discrete Synaptic Events Induce Global Oscillations in Balanced Neural Networks. PHYSICAL REVIEW LETTERS 2024; 133:238401. [PMID: 39714685 DOI: 10.1103/physrevlett.133.238401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/05/2024] [Accepted: 10/31/2024] [Indexed: 12/24/2024]
Abstract
Despite the fact that neural dynamics is triggered by discrete synaptic events, the neural response is usually obtained within the diffusion approximation representing the synaptic inputs as Gaussian noise. We derive a mean-field formalism encompassing synaptic shot noise for sparse balanced neural networks. For low (high) excitatory drive (inhibitory feedback) global oscillations emerge via continuous or hysteretic transitions, correctly predicted by our approach, but not from the diffusion approximation. At sufficiently low in-degrees the nature of these global oscillations changes from drift driven to cluster activation.
Collapse
Affiliation(s)
| | | | - Alessandro Torcini
- Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France
- CNR-Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Pietras B. Pulse Shape and Voltage-Dependent Synchronization in Spiking Neuron Networks. Neural Comput 2024; 36:1476-1540. [PMID: 39028958 DOI: 10.1162/neco_a_01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 07/21/2024]
Abstract
Pulse-coupled spiking neural networks are a powerful tool to gain mechanistic insights into how neurons self-organize to produce coherent collective behavior. These networks use simple spiking neuron models, such as the θ-neuron or the quadratic integrate-and-fire (QIF) neuron, that replicate the essential features of real neural dynamics. Interactions between neurons are modeled with infinitely narrow pulses, or spikes, rather than the more complex dynamics of real synapses. To make these networks biologically more plausible, it has been proposed that they must also account for the finite width of the pulses, which can have a significant impact on the network dynamics. However, the derivation and interpretation of these pulses are contradictory, and the impact of the pulse shape on the network dynamics is largely unexplored. Here, I take a comprehensive approach to pulse coupling in networks of QIF and θ-neurons. I argue that narrow pulses activate voltage-dependent synaptic conductances and show how to implement them in QIF neurons such that their effect can last through the phase after the spike. Using an exact low-dimensional description for networks of globally coupled spiking neurons, I prove for instantaneous interactions that collective oscillations emerge due to an effective coupling through the mean voltage. I analyze the impact of the pulse shape by means of a family of smooth pulse functions with arbitrary finite width and symmetric or asymmetric shapes. For symmetric pulses, the resulting voltage coupling is not very effective in synchronizing neurons, but pulses that are slightly skewed to the phase after the spike readily generate collective oscillations. The results unveil a voltage-dependent spike synchronization mechanism at the heart of emergent collective behavior, which is facilitated by pulses of finite width and complementary to traditional synaptic transmission in spiking neuron networks.
Collapse
Affiliation(s)
- Bastian Pietras
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| |
Collapse
|
4
|
Zheng Z, Xu C, Fan J, Liu M, Chen X. Order parameter dynamics in complex systems: From models to data. CHAOS (WOODBURY, N.Y.) 2024; 34:022101. [PMID: 38341762 DOI: 10.1063/5.0180340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/14/2023] [Indexed: 02/13/2024]
Abstract
Collective ordering behaviors are typical macroscopic manifestations embedded in complex systems and can be ubiquitously observed across various physical backgrounds. Elements in complex systems may self-organize via mutual or external couplings to achieve diverse spatiotemporal coordinations. The order parameter, as a powerful quantity in describing the transition to collective states, may emerge spontaneously from large numbers of degrees of freedom through competitions. In this minireview, we extensively discussed the collective dynamics of complex systems from the viewpoint of order-parameter dynamics. A synergetic theory is adopted as the foundation of order-parameter dynamics, and it focuses on the self-organization and collective behaviors of complex systems. At the onset of macroscopic transitions, slow modes are distinguished from fast modes and act as order parameters, whose evolution can be established in terms of the slaving principle. We explore order-parameter dynamics in both model-based and data-based scenarios. For situations where microscopic dynamics modeling is available, as prototype examples, synchronization of coupled phase oscillators, chimera states, and neuron network dynamics are analytically studied, and the order-parameter dynamics is constructed in terms of reduction procedures such as the Ott-Antonsen ansatz, the Lorentz ansatz, and so on. For complicated systems highly challenging to be well modeled, we proposed the eigen-microstate approach (EMP) to reconstruct the macroscopic order-parameter dynamics, where the spatiotemporal evolution brought by big data can be well decomposed into eigenmodes, and the macroscopic collective behavior can be traced by Bose-Einstein condensation-like transitions and the emergence of dominant eigenmodes. The EMP is successfully applied to some typical examples, such as phase transitions in the Ising model, climate dynamics in earth systems, fluctuation patterns in stock markets, and collective motion in living systems.
Collapse
Affiliation(s)
- Zhigang Zheng
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Can Xu
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingfang Fan
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Maoxin Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Xiaosong Chen
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Goldobin DS, Permyakova EV, Klimenko LS. Macroscopic behavior of populations of quadratic integrate-and-fire neurons subject to non-Gaussian white noise. CHAOS (WOODBURY, N.Y.) 2024; 34:013121. [PMID: 38242105 DOI: 10.1063/5.0172735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
We study macroscopic behavior of populations of quadratic integrate-and-fire neurons subject to non-Gaussian noises; we argue that these noises must be α-stable whenever they are delta-correlated (white). For the case of additive-in-voltage noise, we derive the governing equation of the dynamics of the characteristic function of the membrane voltage distribution and construct a linear-in-noise perturbation theory. Specifically for the recurrent network with global synaptic coupling, we theoretically calculate the observables: population-mean membrane voltage and firing rate. The theoretical results are underpinned by the results of numerical simulation for homogeneous and heterogeneous populations. The possibility of the generalization of the pseudocumulant approach to the case of a fractional α is examined for both irrational and fractional rational α. This examination seemingly suggests the pseudocumulant approach or its modifications to be employable only for the integer values of α=1 (Cauchy noise) and 2 (Gaussian noise) within the physically meaningful range (0;2]. Remarkably, the analysis for fractional α indirectly revealed that, for the Gaussian noise, the minimal asymptotically rigorous model reduction must involve three pseudocumulants and the two-pseudocumulant model reduction is an artificial approximation. This explains a surprising gain of accuracy for the three-pseudocumulant models as compared to the two-pseudocumulant ones reported in the literature.
Collapse
Affiliation(s)
- Denis S Goldobin
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia
- Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Evelina V Permyakova
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia
| | - Lyudmila S Klimenko
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia
- Department of Theoretical Physics, Perm State University, Bukirev Street 15, 614990 Perm, Russia
| |
Collapse
|
6
|
Clusella P, Montbrió E. Exact low-dimensional description for fast neural oscillations with low firing rates. Phys Rev E 2024; 109:014229. [PMID: 38366470 DOI: 10.1103/physreve.109.014229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/18/2023] [Indexed: 02/18/2024]
Abstract
Recently, low-dimensional models of neuronal activity have been exactly derived for large networks of deterministic, quadratic integrate-and-fire (QIF) neurons. Such firing rate models (FRM) describe the emergence of fast collective oscillations (>30 Hz) via the frequency locking of a subset of neurons to the global oscillation frequency. However, the suitability of such models to describe realistic neuronal states is seriously challenged by the fact that during episodes of fast collective oscillations, neuronal discharges are often very irregular and have low firing rates compared to the global oscillation frequency. Here we extend the theory to derive exact FRM for QIF neurons to include noise and show that networks of stochastic neurons displaying irregular discharges at low firing rates during episodes of fast oscillations are governed by exactly the same evolution equations as deterministic networks. Our results reconcile two traditionally confronted views on neuronal synchronization and upgrade the applicability of exact FRM to describe a broad range of biologically realistic neuronal states.
Collapse
Affiliation(s)
- Pau Clusella
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, 08242 Manresa, Spain
| | - Ernest Montbrió
- Neuronal Dynamics Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| |
Collapse
|
7
|
Dolmatova AV, Tyulkina IV, Goldobin DS. Circular cumulant reductions for macroscopic dynamics of oscillator populations with non-Gaussian noise. CHAOS (WOODBURY, N.Y.) 2023; 33:113102. [PMID: 37909899 DOI: 10.1063/5.0159982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
We employ the circular cumulant approach to construct a low dimensional description of the macroscopic dynamics of populations of phase oscillators (elements) subject to non-Gaussian white noise. Two-cumulant reduction equations for α-stable noises are derived. The implementation of the approach is demonstrated for the case of the Kuramoto ensemble with non-Gaussian noise. The results of direct numerical simulation of the ensemble of N=1500 oscillators and the "exact" numerical solution for the fractional Fokker-Planck equation in the Fourier space are found to be in good agreement with the analytical solutions for two feasible circular cumulant model reductions. We also illustrate that the two-cumulant model reduction is useful for studying the bifurcations of chimera states in hierarchical populations of coupled noisy phase oscillators.
Collapse
Affiliation(s)
- Anastasiya V Dolmatova
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia
| | - Irina V Tyulkina
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia
- Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Denis S Goldobin
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia
- Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
- Department of Theoretical Physics, Perm State University, Bukirev Street 15, 614990 Perm, Russia
| |
Collapse
|
8
|
Clusella P, Köksal-Ersöz E, Garcia-Ojalvo J, Ruffini G. Comparison between an exact and a heuristic neural mass model with second-order synapses. BIOLOGICAL CYBERNETICS 2023; 117:5-19. [PMID: 36454267 PMCID: PMC10160168 DOI: 10.1007/s00422-022-00952-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/23/2022] [Indexed: 05/05/2023]
Abstract
Neural mass models (NMMs) are designed to reproduce the collective dynamics of neuronal populations. A common framework for NMMs assumes heuristically that the output firing rate of a neural population can be described by a static nonlinear transfer function (NMM1). However, a recent exact mean-field theory for quadratic integrate-and-fire (QIF) neurons challenges this view by showing that the mean firing rate is not a static function of the neuronal state but follows two coupled nonlinear differential equations (NMM2). Here we analyze and compare these two descriptions in the presence of second-order synaptic dynamics. First, we derive the mathematical equivalence between the two models in the infinitely slow synapse limit, i.e., we show that NMM1 is an approximation of NMM2 in this regime. Next, we evaluate the applicability of this limit in the context of realistic physiological parameter values by analyzing the dynamics of models with inhibitory or excitatory synapses. We show that NMM1 fails to reproduce important dynamical features of the exact model, such as the self-sustained oscillations of an inhibitory interneuron QIF network. Furthermore, in the exact model but not in the limit one, stimulation of a pyramidal cell population induces resonant oscillatory activity whose peak frequency and amplitude increase with the self-coupling gain and the external excitatory input. This may play a role in the enhanced response of densely connected networks to weak uniform inputs, such as the electric fields produced by noninvasive brain stimulation.
Collapse
Affiliation(s)
- Pau Clusella
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003, Barcelona, Spain.
| | - Elif Köksal-Ersöz
- LTSI - UMR 1099, INSERM, Univ Rennes, Campus Beaulieu, 35000, Rennes, France
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003, Barcelona, Spain
| | - Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, Av. Tibidabo, 47b, 08035, Barcelona, Spain.
| |
Collapse
|
9
|
Pyragas V, Pyragas K. Mean-field equations for neural populations with q-Gaussian heterogeneities. Phys Rev E 2022; 105:044402. [PMID: 35590671 DOI: 10.1103/physreve.105.044402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Describing the collective dynamics of large neural populations using low-dimensional models for averaged variables has long been an attractive task in theoretical neuroscience. Recently developed reduction methods make it possible to derive such models directly from the microscopic dynamics of individual neurons. To simplify the reduction, the Cauchy distribution is usually assumed for heterogeneous network parameters. Here we extend the reduction method for a wider class of heterogeneities defined by the q-Gaussian distribution. The shape of this distribution depends on the Tsallis index q and gradually changes from the Cauchy distribution to the normal Gaussian distribution as this index changes. We derive the mean-field equations for an inhibitory network of quadratic integrate-and-fire neurons with a q-Gaussian-distributed excitability parameter. It is shown that the dynamic modes of the network significantly depend on the form of the distribution determined by the Tsallis index. The results obtained from the mean-field equations are confirmed by numerical simulation of the microscopic model.
Collapse
Affiliation(s)
- Viktoras Pyragas
- Center for Physical Sciences and Technology, 10257 Vilnius, Lithuania
| | - Kestutis Pyragas
- Center for Physical Sciences and Technology, 10257 Vilnius, Lithuania
| |
Collapse
|
10
|
di Volo M, Segneri M, Goldobin DS, Politi A, Torcini A. Coherent oscillations in balanced neural networks driven by endogenous fluctuations. CHAOS (WOODBURY, N.Y.) 2022; 32:023120. [PMID: 35232059 DOI: 10.1063/5.0075751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
We present a detailed analysis of the dynamical regimes observed in a balanced network of identical quadratic integrate-and-fire neurons with sparse connectivity for homogeneous and heterogeneous in-degree distributions. Depending on the parameter values, either an asynchronous regime or periodic oscillations spontaneously emerge. Numerical simulations are compared with a mean-field model based on a self-consistent Fokker-Planck equation (FPE). The FPE reproduces quite well the asynchronous dynamics in the homogeneous case by either assuming a Poissonian or renewal distribution for the incoming spike trains. An exact self-consistent solution for the mean firing rate obtained in the limit of infinite in-degree allows identifying balanced regimes that can be either mean- or fluctuation-driven. A low-dimensional reduction of the FPE in terms of circular cumulants is also considered. Two cumulants suffice to reproduce the transition scenario observed in the network. The emergence of periodic collective oscillations is well captured both in the homogeneous and heterogeneous setups by the mean-field models upon tuning either the connectivity or the input DC current. In the heterogeneous situation, we analyze also the role of structural heterogeneity.
Collapse
Affiliation(s)
- Matteo di Volo
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, 95302 Cergy-Pontoise, France
| | - Marco Segneri
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, 95302 Cergy-Pontoise, France
| | - Denis S Goldobin
- Institute of Continuous Media Mechanics, Ural Branch of RAS, Acad. Korolev street 1, 614013 Perm, Russia
| | - Antonio Politi
- Institute for Pure and Applied Mathematics and Department of Physics (SUPA), Old Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Alessandro Torcini
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, 95302 Cergy-Pontoise, France
| |
Collapse
|
11
|
Pyragas K, Fedaravičius AP, Pyragienė T. Suppression of synchronous spiking in two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. Phys Rev E 2021; 104:014203. [PMID: 34412351 DOI: 10.1103/physreve.104.014203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 01/28/2023]
Abstract
Collective oscillations and their suppression by external stimulation are analyzed in a large-scale neural network consisting of two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. In the limit of an infinite number of neurons, the microscopic model of this network can be reduced to an exact low-dimensional system of mean-field equations. Bifurcation analysis of these equations reveals three different dynamic modes in a free network: a stable resting state, a stable limit cycle, and bistability with a coexisting resting state and a limit cycle. We show that in the limit cycle mode, high-frequency stimulation of an inhibitory population can stabilize an unstable resting state and effectively suppress collective oscillations. We also show that in the bistable mode, the dynamics of the network can be switched from a stable limit cycle to a stable resting state by applying an inhibitory pulse to the excitatory population. The results obtained from the mean-field equations are confirmed by numerical simulation of the microscopic model.
Collapse
Affiliation(s)
- Kestutis Pyragas
- Department of Fundamental Research, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Augustinas P Fedaravičius
- Department of Fundamental Research, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Tatjana Pyragienė
- Department of Fundamental Research, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| |
Collapse
|
12
|
Goldobin DS. Mean-field models of populations of quadratic integrate-and-fire neurons with noise on the basis of the circular cumulant approach. CHAOS (WOODBURY, N.Y.) 2021; 31:083112. [PMID: 34470229 DOI: 10.1063/5.0061575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
We develop a circular cumulant representation for the recurrent network of quadratic integrate-and-fire neurons subject to noise. The synaptic coupling is global or macroscopically equivalent to it. We assume a Lorentzian distribution of the parameter controlling whether the isolated individual neuron is periodically spiking or excitable. For the infinite chain of circular cumulant equations, a hierarchy of smallness is identified; on the basis of it, we truncate the chain and suggest several two-cumulant neural mass models. These models allow one to go beyond the Ott-Antonsen Ansatz and describe the effect of noise on hysteretic transitions between macroscopic regimes of a population with inhibitory coupling. The accuracy of two-cumulant models is analyzed in detail.
Collapse
Affiliation(s)
- Denis S Goldobin
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia
| |
Collapse
|
13
|
Goldobin DS, di Volo M, Torcini A. Reduction Methodology for Fluctuation Driven Population Dynamics. PHYSICAL REVIEW LETTERS 2021; 127:038301. [PMID: 34328756 DOI: 10.1103/physrevlett.127.038301] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Lorentzian distributions have been largely employed in statistical mechanics to obtain exact results for heterogeneous systems. Analytic continuation of these results is impossible even for slightly deformed Lorentzian distributions due to the divergence of all the moments (cumulants). We have solved this problem by introducing a "pseudocumulants" expansion. This allows us to develop a reduction methodology for heterogeneous spiking neural networks subject to extrinsic and endogenous fluctuations, thus obtaining a unified mean-field formulation encompassing quenched and dynamical sources of disorder.
Collapse
Affiliation(s)
- Denis S Goldobin
- Institute of Continuous Media Mechanics, Ural Branch of RAS, Acad. Korolev Street 1, 614013 Perm, Russia
- Department of Theoretical Physics, Perm State University, Bukirev Street 15, 614990 Perm, Russia
| | - Matteo di Volo
- Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France
| | - Alessandro Torcini
- Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France
- CNR-Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
- INFN Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
14
|
Zheng T, Kotani K, Jimbo Y. Distinct effects of heterogeneity and noise on gamma oscillation in a model of neuronal network with different reversal potential. Sci Rep 2021; 11:12960. [PMID: 34155243 PMCID: PMC8217259 DOI: 10.1038/s41598-021-91389-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Gamma oscillation is crucial in brain functions such as attentional selection, and is inextricably linked to both heterogeneity and noise (or so-called stochastic fluctuation) in neuronal networks. However, under coexistence of these factors, it has not been clarified how the synaptic reversal potential modulates the entraining of gamma oscillation. Here we show distinct effects of heterogeneity and noise in a population of modified theta neurons randomly coupled via GABAergic synapses. By introducing the Fokker-Planck equation and circular cumulants, we derive a set of two-cumulant macroscopic equations. In bifurcation analyses, we find a stabilizing effect of heterogeneity and a nontrivial effect of noise that results in promoting, diminishing, and shifting the oscillatory region, and is largely dependent on the reversal potential of GABAergic synapses. These findings are verified by numerical simulations of a finite-size neuronal network. Our results reveal that slight changes in reversal potential and magnitude of stochastic fluctuations can lead to immediate control of gamma oscillation, which would results in complex spatio-temporal dynamics for attentional selection and recognition.
Collapse
Affiliation(s)
- Tianyi Zheng
- Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan.
| | - Yasuhiko Jimbo
- Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
15
|
Laing CR. Effects of degree distributions in random networks of type-I neurons. Phys Rev E 2021; 103:052305. [PMID: 34134197 DOI: 10.1103/physreve.103.052305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/07/2022]
Abstract
We consider large networks of theta neurons and use the Ott-Antonsen ansatz to derive degree-based mean-field equations governing the expected dynamics of the networks. Assuming random connectivity, we investigate the effects of varying the widths of the in- and out-degree distributions on the dynamics of excitatory or inhibitory synaptically coupled networks and gap junction coupled networks. For synaptically coupled networks, the dynamics are independent of the out-degree distribution. Broadening the in-degree distribution destroys oscillations in inhibitory networks and decreases the range of bistability in excitatory networks. For gap junction coupled neurons, broadening the degree distribution varies the values of parameters at which there is an onset of collective oscillations. Many of the results are shown to also occur in networks of more realistic neurons.
Collapse
Affiliation(s)
- Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Private Bag 102-904 NSMC, Auckland, New Zealand
| |
Collapse
|
16
|
Ye W. Dynamics of a Large-Scale Spiking Neural Network with Quadratic Integrate-and-Fire Neurons. Neural Plast 2021; 2021:6623926. [PMID: 33679968 PMCID: PMC7925051 DOI: 10.1155/2021/6623926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022] Open
Abstract
Since the high dimension and complexity of the large-scale spiking neural network, it is difficult to research the network dynamics. In recent decades, the mean-field approximation has been a useful method to reduce the dimension of the network. In this study, we construct a large-scale spiking neural network with quadratic integrate-and-fire neurons and reduce it to a mean-field model to research the network dynamics. We find that the activity of the mean-field model is consistent with the network activity. Based on this agreement, a two-parameter bifurcation analysis is performed on the mean-field model to understand the network dynamics. The bifurcation scenario indicates that the network model has the quiescence state, the steady state with a relatively high firing rate, and the synchronization state which correspond to the stable node, stable focus, and stable limit cycle of the system, respectively. There exist several stable limit cycles with different periods, so we can observe the synchronization states with different periods. Additionally, the model shows bistability in some regions of the bifurcation diagram which suggests that two different activities coexist in the network. The mechanisms that how these states switch are also indicated by the bifurcation curves.
Collapse
Affiliation(s)
- Weijie Ye
- School of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, China
- Big data and Educational Statistics Application Laboratory, Guangdong University of Finance and Economics, Guangzhou 510320, China
| |
Collapse
|
17
|
Safari N, Shahbazi F, Dehghani-Habibabadi M, Esghaei M, Zare M. Spike-phase coupling as an order parameter in a leaky integrate-and-fire model. Phys Rev E 2020; 102:052202. [PMID: 33327067 DOI: 10.1103/physreve.102.052202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 09/22/2020] [Indexed: 06/12/2023]
Abstract
It is known that the leaky integrate-and-fire neural model shows a transition from irregular to synchronous firing by increasing the coupling between the neurons. However, a quantitative characterization of this order-disorder transition, that is, the determination of the order of transition and also the critical exponents in the case of continuous transition, is not entirely known. In this work, we consider a network of N excitatory neurons with local connections, residing on a square lattice with periodic boundary conditions. The cooperation between neurons K plays the role of the control parameter that generates criticality when the critical cooperation strength K_{c} is adopted. We introduce the population-averaged voltage (PAV) as a representative value of the network's cooperative activity. Then, we show that the coupling between the timing of spikes and the phase of temporal fluctuations of PAV defined as m resorts to identify a Kuramoto order parameter. By increasing K, we find a continuous transition from irregular spiking to a phase-locked state at the critical point K_{c}. We deploy the finite-size scaling analysis to calculate the critical exponents of this transition. To explore the formal indicator of criticality, we study the neuronal avalanches profile at this critical point and find a scaling behavior with the exponents in a fair agreement with the experimental values both in vivo and in vitro.
Collapse
Affiliation(s)
- Nahid Safari
- Department of Physics, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Farhad Shahbazi
- Department of Physics, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | | | - Moein Esghaei
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), 19395 Tehran, Iran
- Royan Institute for Stem Cell Biology and Technology, ACECR, 16635, Tehran, Iran
| | - Marzieh Zare
- Département de psychologie, Université de Montréal, H3C 3J7 Montréal, Canada
| |
Collapse
|
18
|
Tyulkina IV, Goldobin DS, Klimenko LS, Poperechny IS, Raikher YL. Collective in-plane magnetization in a two-dimensional XY macrospin system within the framework of generalized Ott-Antonsen theory. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190259. [PMID: 32279627 PMCID: PMC7202769 DOI: 10.1098/rsta.2019.0259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The problem of magnetic transitions between the low-temperature (macrospin ordered) phases in two-dimensional XY arrays is addressed. The system is modelled as a plane structure of identical single-domain particles arranged in a square lattice and coupled by the magnetic dipole-dipole interaction; all the particles possess a strong easy-plane magnetic anisotropy. The basic state of the system in the considered temperature range is an antiferromagnetic (AF) stripe structure, where the macrospins (particle magnetic moments) are still involved in thermofluctuational motion: the superparamagnetic blocking Tb temperature is lower than that (Taf) of the AF transition. The description is based on the stochastic equations governing the dynamics of individual magnetic moments, where the interparticle interaction is added in the mean-field approximation. With the technique of a generalized Ott-Antonsen theory, the dynamics equations for the order parameters (including the macroscopic magnetization and the AF order parameter) and the partition function of the system are rigorously obtained and analysed. We show that inside the temperature interval of existence of the AF phase, a static external field tilted to the plane of the array is able to induce first-order phase transitions from AF to ferromagnetic state; the phase diagrams displaying stable and metastable regions of the system are presented. This article is part of the theme issue 'Patterns in soft and biological matters'.
Collapse
Affiliation(s)
- Irina V. Tyulkina
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, Perm 614068, Russia
| | - Denis S. Goldobin
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, Perm 614068, Russia
- Department of Theoretical Physics, Perm State University, Bukirev Street 15, Perm 614990, Russia
| | - Lyudmila S. Klimenko
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, Perm 614068, Russia
- Department of Theoretical Physics, Perm State University, Bukirev Street 15, Perm 614990, Russia
| | - Igor S. Poperechny
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, Perm 614068, Russia
| | - Yuriy L. Raikher
- Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, Perm 614068, Russia
- e-mail:
| |
Collapse
|
19
|
Ceni A, Olmi S, Torcini A, Angulo-Garcia D. Cross frequency coupling in next generation inhibitory neural mass models. CHAOS (WOODBURY, N.Y.) 2020; 30:053121. [PMID: 32491891 DOI: 10.1063/1.5125216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Coupling among neural rhythms is one of the most important mechanisms at the basis of cognitive processes in the brain. In this study, we consider a neural mass model, rigorously obtained from the microscopic dynamics of an inhibitory spiking network with exponential synapses, able to autonomously generate collective oscillations (COs). These oscillations emerge via a super-critical Hopf bifurcation, and their frequencies are controlled by the synaptic time scale, the synaptic coupling, and the excitability of the neural population. Furthermore, we show that two inhibitory populations in a master-slave configuration with different synaptic time scales can display various collective dynamical regimes: damped oscillations toward a stable focus, periodic and quasi-periodic oscillations, and chaos. Finally, when bidirectionally coupled, the two inhibitory populations can exhibit different types of θ-γ cross-frequency couplings (CFCs): phase-phase and phase-amplitude CFC. The coupling between θ and γ COs is enhanced in the presence of an external θ forcing, reminiscent of the type of modulation induced in hippocampal and cortex circuits via optogenetic drive.
Collapse
Affiliation(s)
- Andrea Ceni
- Department of Computer Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Simona Olmi
- Inria Sophia Antipolis Méditerranée Research Centre, 2004 Route des Lucioles, 06902 Valbonne, France
| | - Alessandro Torcini
- Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France
| | - David Angulo-Garcia
- Grupo de Modelado Computacional-Dinámica y Complejidad de Sistemas, Instituto de Matemáticas Aplicadas, Universidad de Cartagena, Carrera 6 #36-100, 130001 Cartagena de Indias, Colombia
| |
Collapse
|