Das S, Barik D. Scaling of intrinsic noise in an autocratic reaction network.
Phys Rev E 2021;
103:042403. [PMID:
34006004 DOI:
10.1103/physreve.103.042403]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Biochemical reactions in living cells often produce stochastic trajectories due to the fluctuations of the finite number of the macromolecular species present inside the cell. A significant number of computational and theoretical studies have previously investigated stochasticity in small regulatory networks to understand its origin and regulation. At the systems level regulatory networks have been determined to be hierarchical resembling social networks. In order to determine the stochasticity in networks with hierarchical architecture, here we computationally investigated intrinsic noise in an autocratic reaction network in which only the upstream regulators regulate the downstream regulators. We studied the effects of the qualitative and quantitative nature of regulatory interactions on the stochasticity in the network. We established an unconventional scaling of noise with average abundance in which the noise passes through a minimum indicating that the network can be noisy both in the low and high abundance regimes. We determined that the bursty kinetics of the trajectories are responsible for such scaling. The scaling of noise remains intact for a mixed network that includes democratic subnetworks within the autocratic network.
Collapse