1
|
Chi Y, Hu Z, Yang T, Zhang P. Synchronization modes of triple flickering buoyant diffusion flames: Experimental identification and model interpretation. Phys Rev E 2024; 109:024211. [PMID: 38491581 DOI: 10.1103/physreve.109.024211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/18/2024] [Indexed: 03/18/2024]
Abstract
The synchronization modes of a nonlinear oscillator system consisting of three identical flickering buoyant diffusion flames in isosceles triangles were studied experimentally and theoretically. Five synchronization modes, such as the in-phase, flickering death, partially flickering death, partially in-phase, and rotation modes, were experimentally observed and identified by systematically adjusting the flame distance and fuel flow rates. Two toy models were adopted to interpret the experimentally identified dynamical modes: one is the classical Kuramoto model, and the other is a complexified Stuart-Landau model, which was proposed through the introduction of the complex coupling term. The theoretical results show that the Kuramoto model successfully interpreted the dynamical modes except for those associated with amplitude death, and the complexified Stuart-Landau model well interpreted all the dynamical modes identified in our experiment. Remarkably, the proposed complexified Stuart-Landau model breaks a new path in the investigation of globally coupled nonlinear dynamical systems with identical oscillators, especially for the study of amplitude death mode.
Collapse
Affiliation(s)
- Yicheng Chi
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Zeying Hu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Tao Yang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Peng Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
2
|
Koch J, Chen Z, Tuor A, Drgona J, Vrabie D. Structural inference of networked dynamical systems with universal differential equations. CHAOS (WOODBURY, N.Y.) 2023; 33:023103. [PMID: 36859213 DOI: 10.1063/5.0109093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Networked dynamical systems are common throughout science in engineering; e.g., biological networks, reaction networks, power systems, and the like. For many such systems, nonlinearity drives populations of identical (or near-identical) units to exhibit a wide range of nontrivial behaviors, such as the emergence of coherent structures (e.g., waves and patterns) or otherwise notable dynamics (e.g., synchrony and chaos). In this work, we seek to infer (i) the intrinsic physics of a base unit of a population, (ii) the underlying graphical structure shared between units, and (iii) the coupling physics of a given networked dynamical system given observations of nodal states. These tasks are formulated around the notion of the Universal Differential Equation, whereby unknown dynamical systems can be approximated with neural networks, mathematical terms known a priori (albeit with unknown parameterizations), or combinations of the two. We demonstrate the value of these inference tasks by investigating not only future state predictions but also the inference of system behavior on varied network topologies. The effectiveness and utility of these methods are shown with their application to canonical networked nonlinear coupled oscillators.
Collapse
Affiliation(s)
- J Koch
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Z Chen
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - A Tuor
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - J Drgona
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - D Vrabie
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
3
|
Manoj K, Pawar SA, Kurths J, Sujith RI. Rijke tube: A nonlinear oscillator. CHAOS (WOODBURY, N.Y.) 2022; 32:072101. [PMID: 35907738 DOI: 10.1063/5.0091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Dynamical systems theory has emerged as an interdisciplinary area of research to characterize the complex dynamical transitions in real-world systems. Various nonlinear dynamical phenomena and bifurcations have been discovered over the decades using different reduced-order models of oscillators. Different measures and methodologies have been developed theoretically to detect, control, or suppress the nonlinear oscillations. However, obtaining such phenomena experimentally is often challenging, time-consuming, and risky mainly due to the limited control of certain parameters during experiments. With this review, we aim to introduce a paradigmatic and easily configurable Rijke tube oscillator to the dynamical systems community. The Rijke tube is commonly used by the combustion community as a prototype to investigate the detrimental phenomena of thermoacoustic instability. Recent investigations in such Rijke tubes have utilized various methodologies from dynamical systems theory to better understand the occurrence of thermoacoustic oscillations and their prediction and mitigation, both experimentally and theoretically. The existence of various dynamical behaviors has been reported in single and coupled Rijke tube oscillators. These behaviors include bifurcations, routes to chaos, noise-induced transitions, synchronization, and suppression of oscillations. Various early warning measures have been established to predict thermoacoustic instabilities. Therefore, this review article consolidates the usefulness of a Rijke tube oscillator in terms of experimentally discovering and modeling different nonlinear phenomena observed in physics, thus transcending the boundaries between the physics and the engineering communities.
Collapse
Affiliation(s)
- Krishna Manoj
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Samadhan A Pawar
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14473, Germany
| | - R I Sujith
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
Araya Y, Ito H, Kitahata H. Bifurcation structure of the flame oscillation. Phys Rev E 2022; 105:044208. [PMID: 35590578 DOI: 10.1103/physreve.105.044208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
A flame exhibits a limit-cycle oscillation, which is called "flame flickering" or "puffing," in a certain condition. We investigated the bifurcation structure of the flame oscillation in both simulation and experiment. We performed a two-dimensional hydrodynamic simulation by employing the flame sheet model. We reproduced the flame oscillation and investigated the parameter dependencies of the amplitude and frequency on the fuel-inlet diameter. We also constructed an experimental system, in which we could finely vary the fuel-inlet diameter, and we investigated the diameter-dependencies of the amplitude and frequency. In our simulation, we observed the hysteresis and bistability of the stationary and oscillatory states. In our experiments, we observed the switching between the stationary and oscillatory states. As fluctuations can induce the switching in the bistable system, switching observed in our experiments suggested the bistability of the two states. Therefore, we concluded that the oscillatory state appeared from the stationary state through the subcritical Andronov-Hopf bifurcation in both the simulation and experiment. The amplitude was increased and the frequency was decreased as the fuel-inlet diameter was increased. In addition, we visualized the vortex structure in our simulation and discussed the effect of the vortex on the flame dynamics.
Collapse
Affiliation(s)
- Yuki Araya
- Department of Physics, Chiba University, Chiba 263-8522, Japan
| | - Hiroaki Ito
- Department of Physics, Chiba University, Chiba 263-8522, Japan
| | | |
Collapse
|
5
|
Mizukami S, Konishi K, Sugitani Y, Kouda T, Hara N. Effects of frequency mismatch on amplitude death in delay-coupled oscillators. Phys Rev E 2021; 104:054207. [PMID: 34942770 DOI: 10.1103/physreve.104.054207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 11/07/2022]
Abstract
The present paper analytically reveals the effects of frequency mismatch on the stability of an equilibrium point within a pair of Stuart-Landau oscillators coupled by a delay connection. By analyzing the roots of the characteristic function governing the stability, we find that there exist four types of boundary curves of stability in a coupling parameters space. These four types depend only on the frequency mismatch. The analytical results allow us to design coupling parameters and frequency mismatch such that the equilibrium point is locally stable. We show that, if we choose appropriate frequency mismatches and delay times, then it is possible to induce amplitude death with strong stability, even by weak coupling. In addition, we show that parts of these analytical results are valid for oscillator networks with complete bipartite topologies.
Collapse
Affiliation(s)
- Shinsuke Mizukami
- Department of Electrical and Information Systems, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Keiji Konishi
- Department of Electrical and Information Systems, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshiki Sugitani
- Department of Electrical and Electronic Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Takahiro Kouda
- Department of Electrical and Information Systems, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Naoyuki Hara
- Department of Electrical and Information Systems, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
6
|
Manoj K, Pawar SA, Sujith RI. Experimental investigation on the susceptibility of minimal networks to a change in topology and number of oscillators. Phys Rev E 2021; 103:022207. [PMID: 33736040 DOI: 10.1103/physreve.103.022207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/12/2021] [Indexed: 11/07/2022]
Abstract
Understanding the global dynamical behavior of a network of coupled oscillators has been a topic of immense research in many fields of science and engineering. Various factors govern the resulting dynamical behavior of such networks, including the number of oscillators and their coupling schemes. Although these factors are seldom significant in large populations, a small change in them can drastically affect the global behavior in small populations. In this paper, we perform an experimental investigation on the effect of these factors on the coupled behavior of a minimal network of candle-flame oscillators. We observe that strongly coupled oscillators exhibit the global behavior of in-phase synchrony and amplitude death, irrespective of the number and the topology of oscillators. However, when they are weakly coupled, their global behavior exhibits the intermittent occurrence of multiple stable states in time. We report the experimental discovery of partial amplitude death in a network of candle-flame oscillators, in addition to the observation of other dynamical states including clustering, chimera, and weak chimera. We also show that closed-loop networks tend to hold global synchronization for longer duration as compared to open-loop networks.
Collapse
Affiliation(s)
- Krishna Manoj
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Samadhan A Pawar
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - R I Sujith
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
7
|
Mohapatra S, Mondal S, Mahapatra PS. Spatiotemporal dynamics of a self-propelled system with opposing alignment and repulsive forces. Phys Rev E 2020; 102:042613. [PMID: 33212711 DOI: 10.1103/physreve.102.042613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/05/2020] [Indexed: 11/07/2022]
Abstract
Effect of concurrent alignment and repulsion is studied in the purview of a confined active matter system using a modified force-based Vicsek model. On alteration of the alignment and the repulsive force parameters, a low alignment random phase, a midrange alignment milling phase, and a high alignment oscillatory phase are identified. Based on the particle aggregations, the milling phase is further classified into three subphases, two of which are spatial patterns: one consisting of compact ring-shaped mills and the other incorporating both rings and clusters. A correlation function based on the inner product of spatial velocity fluctuations of the particles shows a high correlation length for the ringed milling and the rings-clusters hybrid milling state. On analyzing temporal velocity fluctuations of particles through chaos detection techniques, low alignment and high alignment states are indicative of chaos, while the middle order alignment is symbolic of periodicity. The extent of synchronization of the particles' motion is analyzed through a Hilbert transform-based mean frequency approach, leading to the detection of a weak chimera state in the case of the spatial structures. The ringed milling state shows a unique category of weak chimera consisting of multiple oscillator groups showcasing different synchronization frequencies coexisting with desynchronized oscillators.
Collapse
Affiliation(s)
- Siddhant Mohapatra
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sirshendu Mondal
- Department of Mechanical Engineering, National Institute of Technology Durgapur, Kolkata 713209, India
| | - Pallab Sinha Mahapatra
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|