• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4695764)   Today's Articles (386)
For: Sakellariou K, Stemler T, Small M. Markov modeling via ordinal partitions: An alternative paradigm for network-based time-series analysis. Phys Rev E 2019;100:062307. [PMID: 31962534 DOI: 10.1103/physreve.100.062307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 06/10/2023]
Number Cited by Other Article(s)
1
Venugopal G, Sasidharan D, Swaminathan R. Analysis of induced dynamic biceps EMG signal complexity using Markov transition networks. Biomed Eng Lett 2024;14:765-774. [PMID: 38946822 PMCID: PMC11208393 DOI: 10.1007/s13534-024-00372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 07/02/2024]  Open
2
Shahriari Z, Algar SD, Walker DM, Small M. Ordinal Poincaré sections: Reconstructing the first return map from an ordinal segmentation of time series. CHAOS (WOODBURY, N.Y.) 2023;33:2890082. [PMID: 37163996 DOI: 10.1063/5.0141438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
3
A. Gromov V, Beschastnov YN, Tomashchuk KK. Generalized relational tensors for chaotic time series. PeerJ Comput Sci 2023;9:e1254. [PMID: 37346716 PMCID: PMC10280504 DOI: 10.7717/peerj-cs.1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/24/2023] [Indexed: 06/23/2023]
4
Zhang C, Li H, Lan Y. Phase space partition with Koopman analysis. CHAOS (WOODBURY, N.Y.) 2022;32:063132. [PMID: 35778118 DOI: 10.1063/5.0079812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
5
Nomi Y, Gotoda H, Fukuda S, Almarcha C. Complex network analysis of spatiotemporal dynamics of premixed flame in a Hele-Shaw cell: A transition from chaos to stochastic state. CHAOS (WOODBURY, N.Y.) 2021;31:123133. [PMID: 34972344 DOI: 10.1063/5.0070526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
6
Pessa AAB, Ribeiro HV. ordpy: A Python package for data analysis with permutation entropy and ordinal network methods. CHAOS (WOODBURY, N.Y.) 2021;31:063110. [PMID: 34241315 DOI: 10.1063/5.0049901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
7
Ricci L. Asymptotic distribution of sample Shannon entropy in the case of an underlying finite, regular Markov chain. Phys Rev E 2021;103:022215. [PMID: 33736022 DOI: 10.1103/physreve.103.022215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/09/2021] [Indexed: 11/07/2022]
8
Chai M, Lan Y. Symbolic partition in chaotic maps. CHAOS (WOODBURY, N.Y.) 2021;31:033144. [PMID: 33810756 DOI: 10.1063/5.0042705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
9
Sakellariou K, Stemler T, Small M. Estimating topological entropy using ordinal partition networks. Phys Rev E 2021;103:022214. [PMID: 33736019 DOI: 10.1103/physreve.103.022214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/02/2021] [Indexed: 11/07/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA