1
|
Chen JF, Quan HT. Optimal control theory for maximum power of Brownian heat engines. Phys Rev E 2024; 110:L042105. [PMID: 39562878 DOI: 10.1103/physreve.110.l042105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
The pursuit of achieving the maximum output power in microscopic heat engines has gained increasing attention in the field of stochastic thermodynamics. We employ the optimal control theory to study Brownian heat engines and determine the optimal heat-engine cycles in a generic damped situation, which were previously known only in the overdamped and the underdamped limits. These optimal cycles include two isothermal processes, two adiabatic processes, and an extra isochoric relaxation process at the high stiffness constraint. Our results determine the maximum output power under realistic control constraints, and also bridge the gap of the optimal cycles between the overdamped and the underdamped limits. Hence, we solve an outstanding problem in the studies of heat engines by employing the optimal control theory to stochastic thermodynamics. These findings bring valuable insights for the design of high-performance Brownian heat engines in experimental setups.
Collapse
Affiliation(s)
| | - H T Quan
- School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Wu W, An JH. Generalized Quantum Fluctuation Theorem for Energy Exchange. PHYSICAL REVIEW LETTERS 2024; 133:050401. [PMID: 39159107 DOI: 10.1103/physrevlett.133.050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024]
Abstract
The nonequilibrium fluctuation relation is a cornerstone of quantum thermodynamics. It is widely believed that the system-bath heat exchange obeys the famous Jarzynski-Wójcik fluctuation theorem. However, this theorem is established in the Born-Markovian approximation under the weak-coupling condition. Via studying the energy exchange between a harmonic oscillator and its coupled bath in the non-Markovian dynamics, we establish a generalized quantum fluctuation theorem for energy exchange being valid for arbitrary coupling strength. The Jarzynski-Wójcik fluctuation theorem is recovered in the weak-coupling limit. We also find the average energy exchange exhibits rich nonequilibrium characteristics when different numbers of system-bath bound states are formed, which suggests a useful way to control the quantum heat. Deepening our understanding of the fluctuation relation in quantum thermodynamics, our result lays the foundation to design high-efficiency quantum heat engines.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Jun-Hong An
- Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Zhang ZZ, Tan QS, Wu W. Heat distribution in quantum Brownian motion. Phys Rev E 2023; 108:014138. [PMID: 37583192 DOI: 10.1103/physreve.108.014138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
We investigate the heat statistics in a relaxation process of quantum Brownian motion described by the Caldeira-Leggett model. By employing the normal mode transformation and the phase-space formulation approach, we can analyze the quantum heat distribution within an exactly dynamical framework beyond the traditional paradigm of Born-Markovian and weak-coupling approximations. It is revealed that the exchange fluctuation theorem for quantum heat generally breaks down in the strongly non-Markovian regime. Our results may improve the understanding about the nonequilibrium thermodynamics of open quantum systems when the usual Markovian treatment is no longer appropriate.
Collapse
Affiliation(s)
- Ze-Zhou Zhang
- Key Laboratory of Quantum Theory and Applications of Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Qing-Shou Tan
- Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communication, College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414000, China
| | - Wei Wu
- Key Laboratory of Quantum Theory and Applications of Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Chen JF, Quan HT. Hierarchical structure of fluctuation theorems for a driven system in contact with multiple heat reservoirs. Phys Rev E 2023; 107:024135. [PMID: 36932622 DOI: 10.1103/physreve.107.024135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
For driven open systems in contact with multiple heat reservoirs, we find the marginal distributions of work or heat do not satisfy any fluctuation theorem, but only the joint distribution of work and heat satisfies a family of fluctuation theorems. A hierarchical structure of these fluctuation theorems is discovered from microreversibility of the dynamics by adopting a step-by-step coarse-graining procedure in both classical and quantum regimes. Thus, we put all fluctuation theorems concerning work and heat into a unified framework. We also propose a general method to calculate the joint statistics of work and heat in the situation of multiple heat reservoirs via the Feynman-Kac equation. For a classical Brownian particle in contact with multiple heat reservoirs, we verify the validity of the fluctuation theorems for the joint distribution of work and heat.
Collapse
Affiliation(s)
- Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Chen JF. Optimizing Brownian heat engine with shortcut strategy. Phys Rev E 2022; 106:054108. [PMID: 36559462 DOI: 10.1103/physreve.106.054108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Shortcuts to isothermality provide a powerful method to speed up quasistatic thermodynamic processes within finite-time manipulation. We employ the shortcut strategy to design and optimize Brownian heat engines, and we formulate a geometric description of the energetics with the thermodynamic length. We obtain a tight and reachable bound of the output power for shortcut-driven heat engines. The bound is reached by the optimal shortcut protocol to vary the control parameters with a proper constant velocity of the thermodynamic length. With the shortcut strategy, we optimize the control of Brownian heat engines to achieve the maximum power in the general-damped situation. We also derive the efficiency at the maximum power and the maximum power at the given efficiency for shortcut-driven heat engines.
Collapse
Affiliation(s)
- Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Salazar DSP. Thermodynamic skewness relation from detailed fluctuation theorem. Phys Rev E 2022; 106:L042101. [PMID: 36397555 DOI: 10.1103/physreve.106.l042101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The detailed fluctuation theorem (DFT) is a statement about the asymmetry in the statistics of the entropy production. Consequences of the DFT are the second law of thermodynamics and the thermodynamics uncertainty relation, which translate into lower bounds for the mean and variance of currents, respectively. However, far from equilibrium, mean and variance are not enough to characterize the underlying distribution of the entropy production. The fluctuations are not necessarily Gaussian (nor symmetric), which means their skewness could be nonzero. We prove that the DFT imposes a negative tight lower bound for the skewness of the entropy production as a function of the mean. As application, we check the bound in the heat exchange problem between two thermal reservoirs mediated by a qubit swap engine.
Collapse
Affiliation(s)
- Domingos S P Salazar
- Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Zhang ZZ, Wu W. Work statistics and thermal phase transitions. Phys Rev E 2022; 106:034104. [PMID: 36266880 DOI: 10.1103/physreve.106.034104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Many previous studies have demonstrated that work statistics can exhibit certain singular behaviors in the quantum critical regimes of many-body systems at zero or very low temperatures. However, as the temperature increases, it is commonly believed that such singularities will vanish. Contrary to this common recognition, we report a nonanalytic behavior of the averaged work done, which occurs at finite temperature, in the Dicke model as well as the Lipkin-Meshkov-Glick model subjected to the sudden quenches of their work parameters. It is revealed that work statistics can be viewed as a signature of the thermal phase transition when the quenched parameters are tuned across the critical line that separates two different thermal phases.
Collapse
Affiliation(s)
- Ze-Zhou Zhang
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Wei Wu
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Chen YH, Chen JF, Fei Z, Quan HT. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle. Phys Rev E 2022; 106:024105. [PMID: 36109948 DOI: 10.1103/physreve.106.024105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The Curzon-Ahlborn (CA) efficiency, as the efficiency at the maximum power (EMP) of the endoreversible Carnot engine, has significant impact on finite-time thermodynamics. However, the CA engine is based on many assumptions. In the past few decades, although a lot of efforts have been made, a microscopic theory of the CA engine is still lacking. By adopting the method of the stochastic differential equation of energy, we formulate a microscopic theory of the CA engine realized with a highly underdamped Brownian particle in a class of nonharmonic potentials. This theory gives microscopic interpretation of all assumptions made by Curzon and Ahlborn. In other words, we find a microscopic counterpart of the CA engine in stochastic thermodynamics. Also, based on this theory, we derive the explicit expression of the protocol associated with the maximum power for any given efficiency, and we obtain analytical results of the power and the efficiency statistics for the Brownian CA engine. Our research brings new perspectives to experimental studies of finite-time microscopic heat engines featured with fluctuations.
Collapse
Affiliation(s)
- Y H Chen
- School of Physics, Peking University, Beijing 100871, China
| | - Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Zhaoyu Fei
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Salazar DSP. Detailed fluctuation theorem bound for apparent violations of the second law. Phys Rev E 2021; 104:L062101. [PMID: 35030841 DOI: 10.1103/physreve.104.l062101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
The second law of thermodynamics is a statement about the statistics of the entropy production, 〈Σ〉≥0. For small systems, it is known that the entropy production is a random variable and negative values (Σ<0) might be observed in some experiments. This situation is sometimes called apparent violation of the second law. In this sense, how often is the second law violated? For a given average 〈Σ〉, we show that the strong detailed fluctuation theorem implies a lower tight bound for the apparent violations of the second law. As applications, we verify that the bound is satisfied for the entropy produced in the heat exchange problem between two reservoirs mediated by a bosonic mode in the weak-coupling approximation, a levitated nanoparticle, and a classical particle in a box.
Collapse
Affiliation(s)
- Domingos S P Salazar
- Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| |
Collapse
|
10
|
Chen JF, Qiu T, Quan HT. Quantum-Classical Correspondence Principle for Heat Distribution in Quantum Brownian Motion. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1602. [PMID: 34945908 PMCID: PMC8700725 DOI: 10.3390/e23121602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Quantum Brownian motion, described by the Caldeira-Leggett model, brings insights to the understanding of phenomena and essence of quantum thermodynamics, especially the quantum work and heat associated with their classical counterparts. By employing the phase-space formulation approach, we study the heat distribution of a relaxation process in the quantum Brownian motion model. The analytical result of the characteristic function of heat is obtained at any relaxation time with an arbitrary friction coefficient. By taking the classical limit, such a result approaches the heat distribution of the classical Brownian motion described by the Langevin equation, indicating the quantum-classical correspondence principle for heat distribution. We also demonstrate that the fluctuating heat at any relaxation time satisfies the exchange fluctuation theorem of heat and its long-time limit reflects the complete thermalization of the system. Our research study justifies the definition of the quantum fluctuating heat via two-point measurements.
Collapse
Affiliation(s)
- Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China; (J.-F.C.); (T.Q.)
| | - Tian Qiu
- School of Physics, Peking University, Beijing 100871, China; (J.-F.C.); (T.Q.)
| | - Hai-Tao Quan
- School of Physics, Peking University, Beijing 100871, China; (J.-F.C.); (T.Q.)
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Kim EJ. Information Geometry, Fluctuations, Non-Equilibrium Thermodynamics, and Geodesics in Complex Systems. ENTROPY 2021; 23:e23111393. [PMID: 34828093 PMCID: PMC8621045 DOI: 10.3390/e23111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Information theory provides an interdisciplinary method to understand important phenomena in many research fields ranging from astrophysical and laboratory fluids/plasmas to biological systems. In particular, information geometric theory enables us to envision the evolution of non-equilibrium processes in terms of a (dimensionless) distance by quantifying how information unfolds over time as a probability density function (PDF) evolves in time. Here, we discuss some recent developments in information geometric theory focusing on time-dependent dynamic aspects of non-equilibrium processes (e.g., time-varying mean value, time-varying variance, or temperature, etc.) and their thermodynamic and physical/biological implications. We compare different distances between two given PDFs and highlight the importance of a path-dependent distance for a time-dependent PDF. We then discuss the role of the information rate Γ=dLdt and relative entropy in non-equilibrium thermodynamic relations (entropy production rate, heat flux, dissipated work, non-equilibrium free energy, etc.), and various inequalities among them. Here, L is the information length representing the total number of statistically distinguishable states a PDF evolves through over time. We explore the implications of a geodesic solution in information geometry for self-organization and control.
Collapse
Affiliation(s)
- Eun-Jin Kim
- Center for Fluid and Complex Systems, Coventry University, Priory St, Coventry CV1 5FB, UK
| |
Collapse
|
12
|
Costanzo L, Lo Schiavo A, Sarracino A, Vitelli M. Stochastic Thermodynamics of a Piezoelectric Energy Harvester Model. ENTROPY 2021; 23:e23060677. [PMID: 34072218 PMCID: PMC8228079 DOI: 10.3390/e23060677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023]
Abstract
We experimentally study a piezoelectric energy harvester driven by broadband random vibrations. We show that a linear model, consisting of an underdamped Langevin equation for the dynamics of the tip mass, electromechanically coupled with a capacitor and a load resistor, can accurately describe the experimental data. In particular, the theoretical model allows us to define fluctuating currents and to study the stochastic thermodynamics of the system, with focus on the distribution of the extracted work over different time intervals. Our analytical and numerical analysis of the linear model is succesfully compared to the experiments.
Collapse
|
13
|
Ma YH, Zhai RX, Chen J, Sun CP, Dong H. Experimental Test of the 1/τ-Scaling Entropy Generation in Finite-Time Thermodynamics. PHYSICAL REVIEW LETTERS 2020; 125:210601. [PMID: 33275022 DOI: 10.1103/physrevlett.125.210601] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/12/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
The finite-time dynamics, apart from its fundamental importance in nonequilibrium thermodynamics, is of great significance in designing heat engine cycles. We build an experimental apparatus to test the predicted long-time 1/τ scaling of the irreversible entropy generation in the finite-time (τ) thermodynamic process by compressing dry air in a temperature-controlled water bath. We present the first direct experimental validation of the scaling, utilized in many finite-time thermodynamic models at the long-time regime. The experimental data also demonstrate a clear deviation from the scaling at the short-time regime. We show the optimal control scheme to minimize the irreversible entropy generation in finite-time process. Such optimization shall bring new insight to the practical design of heat engine cycles.
Collapse
Affiliation(s)
- Yu-Han Ma
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Ruo-Xun Zhai
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Beijing Normal University, Beijing 100875, China
| | - Jinfu Chen
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|