Kolokolov IV, Lebedev VV. Coherent vortex in two-dimensional turbulence: Interplay of viscosity and bottom friction.
Phys Rev E 2020;
102:023108. [PMID:
32942442 DOI:
10.1103/physreve.102.023108]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/21/2020] [Indexed: 11/06/2022]
Abstract
We examine coherent vortices appearing as a result of the inverse cascade of two-dimensional turbulence in a finite box in the case of pumping with arbitrary correlation time in the quasilinear regime. We demonstrate that the existence of the vortices depends on the ratio between the values of the bottom friction coefficient α and the viscous damping of the flow fluctuations at the pumping scale νk_{f}^{2} (ν is the kinematic viscosity coefficient and k_{f} is the characteristic wave vector at the pumping scale). The coherent vortices appear if νk_{f}^{2}≫α and cannot exist if νk_{f}^{2}≪α. Therefore there is a border value α∼νk_{f}^{2} separating the regions. In numerical simulations, νk_{f}^{2}/α can be arbitrary, whereas in a laboratory experiment νk_{f}^{2}/α≲1 and the coherent vortices can be observed solely near the border value of νk_{f}^{2}/α.
Collapse